Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To compare the efficacy of walking function recovery in patients in the early recovery period of ischemic stroke (IS) using an exoskeleton for the lower extremities and an active-passive pedal exercise bike.
Material And Methods: An open randomized study of 47 patients in the early recovery period of IS was conducted. The rehabilitation course included exercises on an ExoAtlet exoskeleton in group 1 and exercises on a pedal simulator for active-passive training (5 days a week for 2 weeks) in group 2. Several tests were used to evaluate treatment results, including the Hauser walking index, the 10-meter walking test, the Berg balance scale, stabilometry, and biomechanics of walking. The complete training course was completed by 20 patients of group 1 and 21 of group 2.
Results: There was a significant increase in strength in paretic muscles, postural stability, functional level and walking speed in patients of both groups, but in patients of group 1, the dynamics of recovery was more pronounced (<0.05). In group 1, there was a significant decrease in the level of disability and an increase in daily activity, which was higher compared to group 2. An analysis of the main indicators of the statokinesiogram showed the more pronounced positive shifts in patients of group 1, but significant differences were found only in the dynamics of the length and area of the curve in the test with eyes open. When studying the biomechanics of walking, it was found that the function of walking was changed: there was a significant decrease in the speed of movement by 2.2 times, the length of a double step by 1.6 times, and the pace of walking by 1.3 times compared to normal indicators. After the end of exercises, a significant increase in the length of the double step, speed and pace of walking as well as a decrease in the period of the locomotor cycle were found in group 1.
Conclusion: The study revealed a positive impact of hardware rehabilitation on locomotion, both with the use of an exoskeleton and an active-passive pedal simulator. The use of an exoskeleton, have the advantages resulting in a significantly greater recovery of strength, stability, speed and symmetry of walking over the same period of training. A significant increase in postural stability in vertical position was revealed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/jnevro202012008273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!