Successful management and utilization of increasingly large genomic datasets is essential for breeding programs to accelerate cultivar development. To help with this, we developed a Sorghum bicolor Practical Haplotype Graph (PHG) pangenome database that stores haplotypes and variant information. We developed two PHGs in sorghum that were used to identify genome-wide variants for 24 founders of the Chibas sorghum breeding program from 0.01x sequence coverage. The PHG called single nucleotide polymorphisms (SNPs) with 5.9% error at 0.01x coverage-only 3% higher than PHG error when calling SNPs from 8x coverage sequence. Additionally, 207 progenies from the Chibas genomic selection (GS) training population were sequenced and processed through the PHG. Missing genotypes were imputed from PHG parental haplotypes and used for genomic prediction. Mean prediction accuracies with PHG SNP calls range from .57-.73 and are similar to prediction accuracies obtained with genotyping-by-sequencing or targeted amplicon sequencing (rhAmpSeq) markers. This study demonstrates the use of a sorghum PHG to impute SNPs from low-coverage sequence data and shows that the PHG can unify genotype calls across multiple sequencing platforms. By reducing input sequence requirements, the PHG can decrease the cost of genotyping, make GS more feasible, and facilitate larger breeding populations. Our results demonstrate that the PHG is a useful research and breeding tool that maintains variant information from a diverse group of taxa, stores sequence data in a condensed but readily accessible format, unifies genotypes across genotyping platforms, and provides a cost-effective option for genomic selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tpg2.20009 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China.
, a traditional medicinal plant, is commonly found on the Tibetan Plateau at altitudes of 3100-5200 m. Its primary active medicinal compounds, flavonoids and phenylethanol glycosides (PhGs), exhibit various pharmacological effects, including hemostatic, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. This study analyzed flavonoid and PhG metabolites in the roots of collected from Henan County (HN), Guoluo County (GL), Yushu County (YS), and Chengduo County (CD) in Qinghai Province.
View Article and Find Full Text PDFNat Commun
January 2025
Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
Echinacoside (ECH), one of the most representative phenylethanoid glycosides (PhGs), has considerable neuroprotective effects and is an effective ingredient in numerous commercial drugs. Here, we elucidate the complete ECH biosynthetic pathway in the medicinal plant Cistanche tubulosa. In total, 14 related genes are cloned and functionally characterized.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Major depressive disorder (MDD) exhibits notable sex differences in prevalence and clinical and neurobiological manifestations. Though the relationship between peripheral inflammation and MDD-related brain changes is well studied, the role of sex as a modifying factor is underexplored. This study aims to assess how sex influences brain and inflammatory markers in MDD.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico.
Background: α-Amylase (α-AMY) and α-glucosidase (α-GLU) inhibitors are important for controlling postprandial hyperglycemia (PHG). Bixa orellana (annatto) reported inhibitory activity against these enzymes because of its bioactive compound content. However, an understanding of its inhibitory mechanisms and metabolic profile is necessary to establish its therapeutic potential.
View Article and Find Full Text PDFInt J Dermatol
December 2024
The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA.
Premature hair graying (PHG) is the early loss of natural hair color, influenced by genetic, biological, and environmental factors. This review discusses the significant psychological impacts of PHG and explores its underlying mechanisms, related health conditions, and available treatments. The review examines the roles of genetics, oxidative stress, and lifestyle factors such as smoking and diet in premature graying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!