Introduction of a C photosynthetic mechanism into C crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. CO labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C proteins introduced thus far, a functional C pathway is achievable in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955876PMC
http://dx.doi.org/10.1111/pbi.13487DOI Listing

Publication Analysis

Top Keywords

nadp-malic enzyme
12
enzyme activity
12
single construct
8
pep carboxylase
8
enzyme
5
installation photosynthetic
4
photosynthetic pathway
4
pathway enzymes
4
rice
4
enzymes rice
4

Similar Publications

Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.

View Article and Find Full Text PDF

Background And Aims: To better understand C4 evolution in monocots, we characterized C3-C4 intermediate phenotypes in the grass genus Homolepis (subtribe Arthropogoninae).

Methods: Carbon isotope ratio (δ13C), leaf gas exchange, mesophyll (M) to bundle sheath (BS) tissue characteristics, organelle size and numbers in M and BS tissue, and tissue distribution of the P-subunit of glycine decarboxylase (GLDP) were determined for five Homolepis species and the C4 grass Mesosetum loliiforme from a phylogenetic sister clade. We generated a transcriptome-based phylogeny for Homolepis and Mesosetum species to interpret physiological and anatomical patterns in an evolutionary context, and to test for hybridization.

View Article and Find Full Text PDF

In crop genetic improvement, the introduction of C4 plants' characteristics, known for high photosynthetic efficiency and water utilization, into C3 plants has been a significant challenge. This study investigates the effects of the desert halophyte gene from a single-cell C4 photosythetic pathway, on drought resistance and photosynthetic performance in . We used transgenic with from C4 plant with classic Kranz anatomical structure and from C3 photosynthetic cycle plants as controls.

View Article and Find Full Text PDF

Regulatory network of the late-recruited primary decarboxylase C4NADP-ME in sugarcane.

Plant Physiol

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China.

In agronomically important C4 grasses, efficient CO2 delivery to Rubisco is facilitated by NADP-malic enzyme (C4NADP-ME), which decarboxylates malate in bundle sheath cells. However, understanding the molecular regulation of the C4NADP-ME gene in sugarcane (Saccharum spp.) is hindered by its complex genetic background.

View Article and Find Full Text PDF

Light, as a crucial environmental determinant, profoundly influences the synthesis of secondary metabolites in plant metabolism. This study investigated the impacts of the red light combined with ultraviolet-A (UV-A) and ultraviolet-B (UV-B) treatments on phenolic acid biosynthesis in black wheat seedlings. The results demonstrate that the red light combined with UV-A and UV-B treatments significantly enhanced the levels of phenolic acids in black wheat seedlings, at 220.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!