Beta-glucans are polysaccharides of D-glucose monomers linked by (1-3) beta-glycosidic bonds, are found to have a potential immunogenicity risk in biotherapeutic products, and are labeled as process contaminants. A common source of beta-glucans is from the cellulose found in traditional depth filter media. Typically, beta-glucan impurities that leach into the product from the primary clarification depth filters can be removed by the subsequent bind-and-elute affinity chromatography capture step. Beta-glucans can also be removed by a bind-and-elute cation exchange chromatography step, which is useful for removing beta-glucans introduced by a post-Protein A depth filtration step. However, the increasing prevalence of flowthrough polishing chromatography poses a challenge for beta-glucan removal due to the lack of any bind-and-elute chromatography steps after the post-Protein A depth filter. In this work, a depth filter flush strategy was developed to control beta-glucan leaching into the product pool. Different loading conditions for the depth filtration and subsequent chromatography steps were evaluated to determine the robustness of the optimized flush strategy. Carry through runs demonstrated greater than two-fold reduction in beta-glucan levels using the optimized wash as compared to standard filter flush conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.3086 | DOI Listing |
Int J Mol Sci
January 2025
Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations.
View Article and Find Full Text PDFCells
January 2025
Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria.
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial applications, because contaminants reduce significance for analytic purposes and interfere with the safety and quality of commercial products. We aimed to establish axenic cultures of , known as the food additive "Spirulina".
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China.
Background: Kidney depth significantly affects the accuracy of glomerular filtration rate (GFR) measurement, and hydronephrosis-induced morphological changes further challenge its estimation through traditional formulas. This study evaluated the rotation method's efficacy in correcting kidney depth and depth difference during Tc-99m diethylenetriamine pentaacetic acid (DTPA) renal dynamic imaging for GFR assessment.
Methods: This study analyzed 66 individuals treated at First Hospital of Shanxi Medical University with unilateral hydronephrosis between January 2022 and June 2023.
Mar Pollut Bull
January 2025
CREOCEAN, Valparc- bât B, 230 avenue de Rome, 83500 La Seyne-sur-Mer, France.
In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Laboratorio de Bio-Toxicología Ambiental, Instituto de Tecnologías Emergentes y Ciencias Aplicadas. Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín - CONICET, San Martín, Buenos Aires, Argentina; Cátedra de Anatomía Patológica. Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina.
Environmental stressors, such as air particulate matter (PM) and nutrient deficiencies, can significantly impact crucial organs involved in detoxifying xenobiotics, including lungs, liver, and kidneys, especially in vulnerable populations like children. This study investigated the effect of 4-week exposure to Residual Oil Fly Ash (ROFA) on these organs in young rats under growth-restricted nutrition (NGR). We assessed histological, histomorphometric and biochemical parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!