Surface soil liming reduces cadmium uptake in cacao seedlings but subsurface uptake is enhanced.

J Environ Qual

Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee, BE, 3001, Belgium.

Published: September 2020

Cadmium concentrations in cacao (Theobroma cacao L.) beans from South America often exceed trade limits. Liming soil is advocated as a remediation option, but amendments cannot be incorporated into the entire root zone without harming the trees. An experiment was set up to identify how Cd uptake varies within the root zone when surface and subsurface soil layers are either limed or not. The experiment used 22-cm-height pots with top and bottom layers using surface and subsurface soil samples from a cacao field. The potted soils were either surface limed or not or fully limed and layers spiked with stable Cd isotope in various combinations to trace the plant Cd provenance. The root distribution was neither affected by liming nor by soil source; 70% of the root biomass was present in the top layer. Plants grown on the fully limed surface soil had 1.7 times lower Cd concentrations in leaves than the unlimed treatments, whereas this concentration was 1.2 times lower when only the top layer was limed (surface soil used in both layers). The isotope dilution data showed that surface soil liming enhanced Cd uptake from the unlimed bottom layer compared with the unlimed soil, suggesting compensating mechanisms. The pots containing surface soil over subsurface soil also showed that compensating effect but, due to lower phytoavailable Cd in the subsurface soil, surface liming still effectively reduced foliar Cd. We conclude that liming might be a feasible mitigation strategy, but its effectiveness is limited when Cd phytoavailability remains untreated in the subsurface layer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20123DOI Listing

Publication Analysis

Top Keywords

surface soil
20
subsurface soil
16
soil
11
surface
9
soil liming
8
liming soil
8
root zone
8
surface subsurface
8
soil layers
8
fully limed
8

Similar Publications

Prescribed burning effects on carbon and nutrient cycling processes in peatlands of Greater Khingan Mountains, Northeast China.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China. Electronic address:

Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.

View Article and Find Full Text PDF

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation.

Nature

January 2025

Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!