The agricultural reuse of urban sewage sludge (USS) modifies soil properties depending on sludge quality, management, and pedo-environmental conditions. The aim of this microcosm study was to assess C mineralization and subsequent changes in soil properties after USS addition to two typical Mediterranean soils: sandy (Soil S) and sandy loam (Soil A) at equivalent field rates of 40 t ha (USS-40) and 120 t ha (USS-120). Outcomes proved the biodegradability of USS through immediate CO release inside incubation bottles in a dose-dependent manner. Accordingly, the highest rates of daily C emission were recorded with USS-120 (3.7 and 3.9 mg kg d for Soils S and A, respectively) after 84 d of incubation at 25 °C. The addition of USS also improved soil fertility by enhancing soil macronutrients, microbial proliferation, and protease activity. Protease showed significant correlation with N, total organic C, and heterotrophic bacteria, reflecting the biostimulation and bioaugmentation effects of sludge. Soil indices like C/N/P stoichiometry and metabolic quotient (qCO ) varied mostly with mineralization rates of C and P in both soils. Despite a significant increase of soil salinity and total heavy metal content (lead, nickel, zinc, and copper) with USS dose, wheat germination was not affected by these changes. Both experimental soils showed intrinsic (Soil A) and incubation-induced (Soil S) phytotoxicities that were alleviated by USS addition. This was likely due to the enhancement of biodegradation and/or retention of phytotoxicants originating from previous land uses. Urban sewage sludge amendments could have applications in soil remediation by reducing the negative effects of allelopathic and/or anthropogenic phytoinhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20011DOI Listing

Publication Analysis

Top Keywords

urban sewage
12
sewage sludge
12
soil
11
soil properties
8
uss addition
8
uss
6
sludge
5
soils
5
carbon mineralization
4
mineralization biological
4

Similar Publications

Urbanization exacerbates the prevalence of urban diseases such as water pollution. Smart city construction (SCC), a prevailing global trend in urban development, has the potential to catalyze the symbiotic development of the urban economy, society, and environment. This study utilized a difference-in-differences (DID) model with panel data from 150 prefecture-level cities in China during the period of 2011-2017 to evaluate the impact of SCC on urban sewage treatment.

View Article and Find Full Text PDF

Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors.

iScience

December 2024

Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.

Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

Spatiotemporal dynamics and spatial correlation patterns of urban ecological resilience across the Yellow River Basin in China.

Sci Rep

December 2024

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China.

Addressing the need to harmonize environment conservation and sustainable economic development within the Yellow River Basin (YRB) requires a profound comprehension of the spatiotemporal dynamics of urban ecosystem resilience. This study developed an index system utilizing the resistance-adaptability-recovery framework to measure these dynamics. By applying the advanced multi-attribute boundary area comparison method and a spatial autocorrelation model, we investigated the spatiotemporal variations and spatial correlation patterns of urban ecological resilience across the YRB.

View Article and Find Full Text PDF

Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China.

Environ Pollut

December 2024

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China. Electronic address:

Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!