Background: The traditional technique of gastrointestinal reconstruction of the esophagus after esophagectomy presents plenty of complications. Hence, tissue engineering has been introduced as an effective artificial alternative with potentially fewer complications. Three types of esophageal scaffolds have been used in experimental studies so far. The aim of our meta-analysis is to present the postoperative outcomes after esophageal replacement with artificial scaffolds and the investigation of possible factors that affect these outcomes.

Methods: The present proportional meta-analysis was designed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and A MeaSurement Tool to Assess systematic Reviews guidelines. We searched Medline, Scopus, Clinicaltrials.gov, EMBASE, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases from inception until February 2020.

Results: Overall, 32 studies were included that recruited 587 animals. The pooled morbidity after esophageal scaffold implantation was 53.4% (95% CI = 36.6-70.0%). The pooled survival interval was 111.1 days (95% CI = 65.5-156.8 days). Graft stenosis (46%), postoperative dysphagia (15%), and anastomotic leak (12%) were the most common complications after esophageal scaffold implantation. Animals that underwent an implantation of an artificial scaffold in the thoracic part of their esophagus presented higher survival rates than animals that underwent scaffold implantation in the cervical or abdominal part of their esophagus (P < 0.001 and P = 0.011, respectively).

Conclusion: Tissue engineering seems to offer an effective alternative for the repair of esophageal defects in animal models. Nevertheless, issues like graft stenosis and lack of motility of the esophageal scaffolds need to be addressed in future experimental studies before scaffolds can be tested in human trials.

Download full-text PDF

Source
http://dx.doi.org/10.1093/dote/doaa104DOI Listing

Publication Analysis

Top Keywords

scaffold implantation
12
artificial scaffolds
8
experimental studies
8
proportional meta-analysis
8
systematic reviews
8
esophageal scaffold
8
animals underwent
8
esophageal
5
esophageal defect
4
defect repair
4

Similar Publications

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Metastasis represents a stage in which the therapeutic objective changes from curing disease to prolonging survival, as detection typically occurs at advanced stages. Technologies for the early identification of disease would enable treatment at a lower disease burden and heterogeneity. Herein, we investigate the vascular dynamics within a synthetic metastatic niche as a potential marker of disease progression.

View Article and Find Full Text PDF

The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average.

View Article and Find Full Text PDF

The goat as a model for temporomandibular joint disc replacement: Techniques for scaffold fixation.

Br J Oral Maxillofac Surg

November 2024

Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

A state-of-the-art scaffold capable of efficiently reconstructing the temporomandibular joint (TMJ) disc after discectomy remains elusive. The major challenge has been to identify a degradable scaffold that remodels into TMJ disc-like tissue, and prevents increased joint pathology, among other significant complications. Tissue engineering research provides a foundation for promising approaches towards the creation of successful implants/scaffolds that aim to restore the disc.

View Article and Find Full Text PDF

Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds.

Colloids Surf B Biointerfaces

December 2024

Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:

The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!