Personalized dynamic transport of magnetic nanorobots inside the brain vasculature.

Nanotechnology

J. Mike Walker' 66 Department of Mechanical Engineering, Texas A&M University, College Station, United States of America.

Published: December 2020

Delivering specific bioactive agents with sufficient bioavailability to the targeted brain area across blood brain barrier remains a big challenge. Magnetically driven nanorobots have demonstrated their potential for controlled drug delivery. However, the dynamic transport of these nanorobots inside each individual's brain vasculature is not yet well studied. Addressing this is a critical step forward to controlled drug delivery for non-invasive brain therapeutics. In this paper, we develop an analytical model describing the personalized dynamic transport of spherical magnetic nanorobots inside the brain vasculature reconstructed from the patient's angiography images. By inverting the transporting process, we first design the patient-specific transport path based on the reconstructed vascular model, and then calculate the magnetic force required to drive these nanorobots from the analytical model. Also, a finite element model is created to simulate the inverse design process, which implies that the delivery efficiency of these magnetically driven nanorobots to the targeted brain area can be increased by 20% and almost 95% nanorobots arrive at the desired vessel walls. In the end, a simplified brain vascular model is printed using PolyJet 3D 750 to demonstrate the dynamic transport of these nanorobots toward the targeted site. The proposed theoretical modeling, numerical simulation and experimental validation lay solid foundation toward non-invasive brain therapeutics with maximal accuracy and minimal side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abb392DOI Listing

Publication Analysis

Top Keywords

dynamic transport
16
nanorobots inside
12
brain vasculature
12
brain
9
personalized dynamic
8
nanorobots
8
magnetic nanorobots
8
inside brain
8
targeted brain
8
brain area
8

Similar Publications

Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.

View Article and Find Full Text PDF

Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.

View Article and Find Full Text PDF

We describe the utility of 'folic and folinic acid load tests' in the investigation of a 26-year-old woman with persistently low serum folate and moderate hyperhomocysteinaemia unresponsive to folic acid supplements. Serum folate, plasma 5-methyltetrahydrofolate (5-MTHF), red cell 5-MTHF and plasma total homocysteine at baseline, 2-h, 4-h and 2- or 4-days (if applicable) post administration of a large dose of oral folic acid, or oral or parenteral folinic acid were measured. The tests confirmed non-compliance but also suggested an unsuspected possible defect in the folate pathway based on differential response to folic versus folinic acid supplements.

View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

The position of landslides on a slope plays a crucial role in determining landslide susceptibility and the likelihood of landslide debris interacting with the fluvial system. Most studies primarily focus on shallow landslides in the bedrock weathering zone or large-scale bedrock landslides, but the relevant work about the location and connectivity to channels of loess landslides is limited despite their potential to provide insights into slope stability and material transport in loess regions. In this study, we explored differences in landslide location and connectivity to channels between 2013 Mw5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!