Controllable direct C-H arylation with high regioselectivity is highly desirable yet remains a formidable challenge. Herein, a facile regioselective direct C-H arylation is developed for efficient construction of a variety of symmetrical dithienophthalimide-based -conjugated molecules. The resulting methodology is applicable to a wide range of substrates, from electron-rich units to electron-deficient units with large steric end groups. Aryl halides have been confirmed to be able to couple with dithienophthalimide (DTI) via direct C-H arylation, showing high regioselectivity. Varying the functional end groups onto the DTI core has been demonstrated to fine tune the emission colors to cover most of the visible spectra. The results suggest a facile strategy towards highly selective direct C-H arylation, opening the prospects towards efficient construction of -conjugated molecules for various potential optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510346 | PMC |
http://dx.doi.org/10.34133/2020/9075697 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario N2L 3G1, Canada.
Research has shown microplastic particles to be pervasive pollutants in the natural environment, but labor-intensive sample preparation, data acquisition, and analysis protocols continue to be necessary to navigate their diverse chemistry. Machine learning (ML) classification models have shown promise for identifying microplastics from their Raman spectra, but all attempts to date have focused on the lower energy "fingerprint" region of the spectrum. We explore strategies to improve ML classification models based on the -nearest-neighbor algorithm by including other regions of the Raman spectra.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
A TEMPO-mediated β-ketoalkylation of enaminoesters with cyclopropanols under metal-free conditions is herein described. This reaction provides a straightforward and highly efficient route to β-keto alkyl substituted enaminoesters for the first time, which could be rapidly and efficiently converted into synthetically useful 2-alkoxycarbonyl functionalized 1,5-diketones. Moreover, the practicability of this protocol is successfully demonstrated by scale-up experiments and the late-stage functionalization of natural products and pharmaceutically relevant molecules.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!