Degeneration of the intervertebral disc (IVD) is a condition that is often associated with debilitating back pain. There are no disease-modifying treatments available to halt the progression of this ubiquitous disorder. This is partly due to a lack of understanding of extracellular matrix (ECM) changes that occur at the micro- and nanometer size scales as the disease progresses. Over the past decade, atomic force microscopy (AFM) has been utilized as a tool to investigate the impact of disease on nanoscale structure of ECM in bone, skin, tendon, and dentin. We have expanded this methodology to include the IVD and report the first quantitative analysis of ECM structure at submicron size scales in a murine model for progressive IVD degeneration. Collagen D-spacing, a metric of nanoscale structure at the fibril level, was observed as a distribution of values with an overall average value of 62.5 ± 2.5 nm. In degenerative discs, the fibril D-spacing distribution shifted towards higher values in both the annulus fibrosus and nucleus pulposus (NP) ( < .05). A novel microstructural feature, , defined by a topographical pit enclosed by fibril-forming matrix was observed in the NP. With degeneration, these microstructures became more numerous and the morphology was altered from circular (aspect ratio 1.0 ± 0.1) to oval (aspect ratio 1.5 ± 0.4), < .005. These analyses provide ECM structural details of the IVD at size scales that have historically been missing in studies of disc degeneration. Knowledge gained from these insights may aid the development of novel disease-modifying therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524250 | PMC |
http://dx.doi.org/10.1002/jsp2.1125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!