Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small ubiquitin-like modifier (SUMO) conjugation, or SUMOylation, is a reversible post-translational modification that is important for regulation of many cellular processes including cell division cycle in the eukaryotic kingdom. However, only a portion of the components of the Chlamydomonas SUMOylation system are known and their functions and regulation investigated. The present studies are aimed at extending discovery and characterization of new components and improving the annotation and nomenclature of all known proteins and genes involved in the system. Even though only one copy of the heterodimerized SUMO-activating enzyme, and , was identified, the number of SUMO-conjugating enzymes (s) and SUMO proteases/isopeptidase was expanded in Chlamydomonas. Using the reconstituted SUMOylation system, we showed that SCE1, SCE2, and SCE3 have SUMO-conjugating activity. In addition to SUMOylation, components required for other post-translational modifications such as NEDDylation, URMylation, and UFMylation, were confirmed to be present in Chlamydomonas. Our data also showed that besides isopeptidase activity, the SUMO protease domain of SUPPRESSOR OF MAT3 7/SENTRIN-SPECIFIC PROTEASE 1 (SMT7/SENP1) has endopeptidase activity that is capable of processing SUMO precursors. Moreover, the key cell cycle regulators of Chlamydomonas E2F1, DP1, CDKG1, CYCD2, and CYCD3 were SUMOylated in vitro, suggesting SUMOylation may be part of regulatory pathway modulating cell cycle regulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522501 | PMC |
http://dx.doi.org/10.1002/pld3.266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!