Background: Hematopoietic stem cell transplant is a crucial intervention to definitively treat many hematopoietic malignancies, but it carries great risks of morbidity and mortality often associated with graft-versus-host disease (GVHD). Acute and chronic GVHD are distinct entities, defined by a combination of historical, clinical, and pathologic data, but both are generally thought to stem from self-propagating aberrantly activated immune cells inflicting end organ damage, with the potential to cause significant illness or even death. Event-free survival rates after hematopoietic stem cell transplant continue to improve each year, but GVHD remains a major hurdle in improving the efficacy and safety of transplant.

Objective: Recent studies demonstrating tissue-specific immune effector phenotypes underscore the need for a deeper understanding of the cellular and molecular pathways driving the destruction of target tissues in patients with acute GVHD.

Methods: Samples were collected from lesional and unaffected skin in five patients with acute cutaneous GHVD. Fresh tissue was processed for fluorescence-activated cell sorting and analysis of macrophages and lymphocytes.

Results: The percentage of lymphocytes and macrophages as a representation of total cells varied among patients and was not always consistent between lesional and unaffected sites. The heterogeneity in immune cell profiling observed in patients in this study could reflect the diverse demographics, conditioning, and transplant conditions of each individual.

Conclusion: This study provides initial insight into the underlying molecular mechanisms of cutaneous GVHD progression and paves the way for additional studies to examine the cellular and molecular landscape in greater detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522857PMC
http://dx.doi.org/10.1016/j.ijwd.2020.05.009DOI Listing

Publication Analysis

Top Keywords

immune cell
8
hematopoietic stem
8
stem cell
8
cell transplant
8
cellular molecular
8
patients acute
8
lesional unaffected
8
cell
5
local immune
4
cell infiltration
4

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ProMIS Neurosciences, Toronto, ON, Canada.

Background: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!