Semi-supervised deep learning based 3D analysis of the peripapillary region.

Biomed Opt Express

Simon Fraser University, Department of Engineering Science, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

Published: July 2020

Optical coherence tomography (OCT) has become an essential tool in the evaluation of glaucoma, typically through analyzing retinal nerve fiber layer changes in circumpapillary scans. Three-dimensional OCT volumes enable a much more thorough analysis of the optic nerve head (ONH) region, which may be the site of initial glaucomatous optic nerve damage. Automated analysis of this region is of great interest, though large anatomical variations and the termination of layers make the requisite peripapillary layer and Bruch's membrane opening (BMO) segmentation a challenging task. Several machine learning-based segmentation methods have been proposed for retinal layer segmentation, and a few for the ONH region, but they typically depend on either heavily averaged or pre-processed B-scans or a large amount of annotated data, which is a tedious task and resource-intensive. We evaluated a semi-supervised adversarial deep learning method for segmenting peripapillary retinal layers in OCT B-scans to take advantage of unlabeled data. We show that the use of a generative adversarial network and unlabeled data can improve the performance of segmentation. Additionally, we use a Faster R-CNN architecture to automatically segment the BMO. The proposed methods are then used for the 3D morphometric analysis of both control and glaucomatous ONH volumes to demonstrate the potential for clinical utility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510893PMC
http://dx.doi.org/10.1364/BOE.392648DOI Listing

Publication Analysis

Top Keywords

deep learning
8
optic nerve
8
onh region
8
unlabeled data
8
semi-supervised deep
4
learning based
4
analysis
4
based analysis
4
analysis peripapillary
4
region
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!