Molecular characterization of isolates from nosocomial and community-acquired infections using accurate, reproducible, and rapid typing methods is essential for the fast identification of prevalent and epidemic strains. Although sequence-based typing is highly effective, PCR-based techniques (such as high-resolution melting curve analysis, HRM) are simpler, less expensive, faster, and can be performed in a single and closed-tube assay format, thereby reducing the risk of contamination. A total of 51 methicillin-resistant (MRSA) ( = 26) and methicillin-sensitive (MSSA) ( = 25) isolates from Karaj ( = 10) and Yasuj ( = 41), Iran, were subjected to HRM. All selected isolates were identified by the standard -typing method. Among the 51 tested isolates, 11 genotype profiles were distinguished from 12 types. Strains t1077 and t1816 exhibited the highest and lowest melting temperatures (81.8°C and 79.4°C), with 46.7% and 39.8% G + C contents, respectively. Strains t706 and t1816, with almost identical G + C contents, had the same HRM genotypes, but their curves differed due to different G + C distributions. Four standard types (strains t030, t037, t701 and t5598) were differentiated correctly and their melting temperatures were 81.2°C, 81.4°C, 80.4°C and 80.1°C, respectively. We demonstrated that HRM profiling is a rapid method which enables the accurate screening of certain strains (especially the endemic ones), and may be used for bacterial surveillance. However, it cannot replace sequence-based typing, especially for newly emerging types, and therefore cannot be used as a standardized global method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525133PMC
http://dx.doi.org/10.1016/j.nmni.2019.100618DOI Listing

Publication Analysis

Top Keywords

high-resolution melting
8
sequence-based typing
8
types strains
8
melting temperatures
8
g + c contents
8
isolates
5
strains
5
evaluation high-resolution
4
melting
4
melting analysis
4

Similar Publications

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Crystallization of CsPbBr Nanocrystals within a Melt-Quenched Glassy Coordination Polymer.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Lead halide perovskite nanocrystal materials such as CsPbX (X = Cl, Br, and I) have triggered an intense research upsurge due to their excellent scintillation performance. Herein, an crystallization strategy is developed to grow CsPbBr nanocrystals (NCs) within a low-melting-point (280 °C) coordination polymer (CP) glass. The viscosity of coordination glass is reduced through a low-temperature (e.

View Article and Find Full Text PDF

Carotenoids are a diverse group of pigments imparting red, orange, and yellow hues to many horticultural plants, also enhancing their nutritional properties and health benefits. In strawberry, the genetic and molecular mechanisms regulating the natural variation of fruit carotenoid composition remain largely unexplored. In this study, we use a population segregating in yellow/white flesh to detect a major quantitative trait locus (QTL), qYellow Flesh-4B, located on chromosome 4B and accounting for 82% of total phenotypic variation.

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

Bacterial biofilms are major contributors to persistent infections and antimicrobial resistance, posing significant challenges to treatment. However, obtaining high-resolution structural information on native bacterial biofilms has remained elusive due to the methodological limitations associated with analyzing complex biological samples. Solid-state NMR (ssNMR) has shown promise in this regard, but its conventional application is hindered by sensitivity constraints for unlabeled samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!