Rare earth (RE) doped inorganic nanocrystals have been demonstrated as efficient contrast agents for deep tissue shortwave-infrared (SWIR) imaging with high sensitivities leading to potential early detection of tumors. However, a potential concern is the unknown long-term toxicity and incompatibility of inorganic nanocrystals. In this work, biodegradable rare earth nanocrystals of Nd doped SrFCl coated with polydopamine (SrFCl:Nd@PDA) were designed. Instead of traditional fluoride hosts, the chlorinated SrF ( SrFCl) with low phonon energy which significantly improved the brightness of SrFCl:Nd in the SWIR region was used as the host. After coating with a NIR-absorptive PDA layer, the SrFCl:Nd nanoparticles serve as not only a contrast agent for photoacoustic imaging, but also a potential photothermal agent for cancer therapy. Moreover, these SrFCl:Nd@PDA nanoparticles can be rapidly and completely degraded in phosphate buffer solution within 1 h, which effectively addresses the concerns of the deleterious effects arising from potential long term accumulation. The increased accumulation and retention at tumor sites, and complete clearance ∼6 h after injection make these SrFCl:Nd@PDA nanoparticles a promising degradable phototheranostic agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497408PMC
http://dx.doi.org/10.1039/d0ra00760aDOI Listing

Publication Analysis

Top Keywords

rare earth
12
biodegradable rare
8
inorganic nanocrystals
8
srfclnd@pda nanoparticles
8
earth fluorochloride
4
nanocrystals
4
fluorochloride nanocrystals
4
nanocrystals phototheranostics
4
phototheranostics rare
4
earth doped
4

Similar Publications

Computer vision based automatic evaluation method of YO steel coating performance with SEM image.

Sci Rep

January 2025

State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China.

This study introduces a deep learning-based automatic evaluation method for analyzing the microstructure of steel with scanning electron microscopy (SEM), aiming to address the limitations of manual marking and subjective assessments by researchers. By leveraging advanced computer vision algorithms, specifically a suitable model for long-term dendritic solidifications named Tang Rui Detect (TRD), the method achieves efficient and accurate detection and quantification of microstructure features. This approach not only enhances the training process but also simplifies loss function design, ultimately leading to a proper evaluation of surface modifications in steel materials.

View Article and Find Full Text PDF

Rare earth element (REEs) imprints and provenance of wetland sediments from Oaxaca coast, Mexico.

Mar Pollut Bull

January 2025

Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de junio de 1520, Barrio la Laguna Ticomán, Delg. Gustavo A Madero, C.P. 07340, Ciudad de México, Mexico.

REEs in wetland sediments from the Oaxaca coast in southern Mexico were used to infer the sources and depositional processes by involving both the geochemical characteristics and geostatistical approaches. Statistically strong positive correlation between REEs confirmed similar origin in all the cores. Light REEs (LREEs) represented >84 % of ΣREE mean concentrations varies between 47.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!