Cellular transplantation, due to the low regenerative capacity of the Central Nervous System (CNS), is one of the promising strategies in the treatment of neurodegenerative diseases. The design and application of scaffolds mimicking the CNS extracellular matrix features (biochemical, bioelectrical, and biomechanical), which affect the cellular fate, are important to achieve proper efficiency in cell survival, proliferation, and differentiation as well as integration with the surrounding tissue. Different studies on natural materials demonstrated that hydrogels made from natural materials mimic the extracellular matrix and supply microenvironment for cell adhesion and proliferation. The design and development of cellular microstructures suitable for neural tissue engineering purposes require a comprehensive knowledge of neuroscience, cell biology, nanotechnology, polymers, mechanobiology, and biochemistry. In this review, an attempt was made to investigate this multidisciplinary field and its multifactorial effects on the CNS microenvironment. Many strategies have been used to simulate extrinsic cues, which can improve cellular behavior toward neural lineage. In this study, parallel and align, soft and injectable, conductive, and bioprinting scaffolds were reviewed which have indicated some successes in the field. Among different systems, three-Dimensional (3D) bioprinting is a powerful, highly modifiable, and highly precise strategy, which has a high architectural similarity to tissue structure and is able to construct controllable tissue models. 3D bioprinting scaffolds induce cell attachment, proliferation, and differentiation and promote the diffusion of nutrients. This method provides exceptional versatility in cell positioning that is very suitable for the complex Extracellular Matrix (ECM) of the nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502166 | PMC |
J Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:
Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China. Electronic address:
This paper reviews the important role of endoplasmic reticulum stress in the patho mechanism of liver fibrosis and its potential as a potential target for the treatment of liver fibrosis. Liver fibrosis is the result of sustained inflammation and injury to the liver due to a variety of factors, triggering excessive deposition of extracellular matrix and fibrous scar formation, which in turn leads to loss of liver function and a variety of related complications. Endoplasmic reticulum stress is one of the characteristics of chronic liver disease and is closely related to the pathological process of chronic liver disease, including alcohol-related liver disease, viral hepatitis, and liver fibrosis.
View Article and Find Full Text PDFJ Neuroimmunol
January 2025
Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Electronic address:
The extracellular matrix (ECM) plays an important role in the central nervous system (CNS), shaping tissue structure and functions as well as contributing to the pathology of chronic diseases such as multiple sclerosis (MS). ECM components, including fibulin-2 (FBLN2) and chondroitin sulfate proteoglycans (CSPGs), may impact neuroinflammation and remyelination. We investigated the capacity of FBLN2 to modulate immune responses and evaluated its interaction with CSPGs in experimental autoimmune encephalomyelitis (EAE), a common model for MS.
View Article and Find Full Text PDFTissue Cell
January 2025
Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, PR China. Electronic address:
Introduction: Pressure Injury (PI) is a complex disease process which is influenced by multiple factors, among which ischemia-reperfusion (I/R) injury is closely related to the progression of PI. But its biomarkers are still unclearly. Understanding its physiological mechanisms and related molecular biomarkers is a key to developing effective prevention and therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!