Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NHNO treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the () was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500209 | PMC |
http://dx.doi.org/10.3389/fpls.2020.571912 | DOI Listing |
Vet Med Sci
January 2025
Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.
Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.
View Article and Find Full Text PDFPlant Divers
November 2024
Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
Andromonoecy is a rare sexual system in plants. The function of additional male flowers in andromonoecious species has been widely discussed; however, few studies have taken offspring fitness into account. In addition, little is known about the mechanisms that maintain andromonoecy in autogamous species.
View Article and Find Full Text PDFRecent Pat Biotechnol
December 2024
Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.
Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.
Int J Biol Macromol
January 2025
School of Food Science and Engineering, Wuhan Polytechnic University,Wuhan 430023, China.
Glycosylation can be used to improve the emulsifying properties of protein by covalently binding with sugar. In this study, we prepared coconut protein (CP) -polygalacturonic acid (PA) conjugates by dry-heat method, studied the effect of PA with different molecular weight on the structure and functionality of CP, and characterized the interfacical behavior of CP at the oil-water interface to establish the relationship between interfacial behavior and emulsion stability. The results showed that different molecular weights of PA (28.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Respiratory and Critical Care Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Acute lung injury (ALI), one of the most severe respiratory system diseases, is prevalent worldwide. Annexin A1 (AnxA1) is an important member of the annexin superfamily, known for its wide range of physiological functions. However, its potential protective effect against lipopolysaccharide (LPS)-induced ALI remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!