Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462000 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.01864 | DOI Listing |
Trends Immunol
December 2024
Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland. Electronic address:
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease.
View Article and Find Full Text PDFBr J Ophthalmol
December 2024
Department of Ophthalmology and Medical Research Center, Oulu University Hospital; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
Background/aims: The purpose of this study is to define genetic factors associated with anterior uveitis through genome-wide association study (GWAS).
Methods: In this GWAS meta-analysis, we combined data from the FinnGen, Estonian Biobank and UK Biobank with a total of 12 205 anterior uveitis cases and 917 145 controls. We performed a phenome-wide association study (PheWAS) to investigate associations across phenotypes and traits.
Autoimmun Rev
December 2024
Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. Electronic address:
Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA.
View Article and Find Full Text PDFMatrix Biol
December 2024
Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH. Electronic address:
Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals.
View Article and Find Full Text PDFImmunity
December 2024
Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!