Purpose: The elevation of intraocular pressure (IOP), a major risk factor in glaucoma, is an important parameter tracked in experimental models of this disease. However, IOP measurement in laboratory rodents is challenging and may not correlate with some key pathological events that occur in the development of glaucoma. The aims of this study were to quantify changes in ocular morphology in DBA/2J mice that develop spontaneous, age-dependent, pigmentary glaucoma and to check the possible correlation of these parameters with IOP.
Method: Eye morphology was evaluated with MRI in DBA/2J, DBA/2J-Gpnmb/SjJ, and C57BL/6J female mice ages 3, 6, 9, 12, and 15 months. The animals were anesthetized with isoflurane. A planar receive-only surface coil (inner diameter = 10 mm) was placed over each animal's left eye and the image was acquired with a 7T small animal-dedicated magnetic resonance tomograph and T2-weighted TurboRARE sequence. Ocular dimensions were manually quantitated using OsiriX software. IOP was measured with rebound tonometry.
Results: In the control animals, no age-related changes in the ocular morphology were noted. Since 6 months of age, the anterior chamber deepening and elongation of the eyeballs of DBA/2J mice was detectable. We found a significant, positive correlation between IOP and axial length, anterior chamber area, or anterior chamber width in C57BL/6J mice but not in DBA/2J mice. However, after excluding the measurements performed in the oldest DBA/2J mice (i.e. analyzing only the animals ages 3 to 12 months), we demonstrated a significant positive correlation between IOP and anterior chamber width.
Conclusion: High-resolution magnetic resonance imaging of the eye area in mice enables reproducible and consistent measures of key dimensions of the eyeball. We observed age-dependent alterations in the eye morphology of DBA/2J mice that mostly affected the anterior chamber. We also demonstrated a correlation between some of the ocular dimensions and the IOP of C57Bl/6J mice and DBA/2J mice with moderately advanced glaucomatous pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500411 | PMC |
http://dx.doi.org/10.3389/fphar.2020.573238 | DOI Listing |
Autophagy Rep
November 2023
Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA.
Glaucoma encompasses a spectrum of disorders characterized by the chronic degeneration of retinal ganglion cell (RGC) axons and the progressive loss of RGCs, resulting in visual impairment. In this study, we investigated the effect of autophagy deficiency on two glaucoma hypertensive models, the DBA/2J spontaneous glaucoma model, and the TGFβ2 (transforming growth factor β2) chronic ocular hypertensive model. For this, we used the and DBA/2J- mice, this latter generated in our laboratory via CRISPR/Cas9 technology, which display impaired autophagy.
View Article and Find Full Text PDFPurpose: The aim of this study was to test whether oral administration of nicotinamide riboside (NR), the nicotinamide adenine dinucleotide (NAD+) precursors, protect retina ganglion cells (RGCs) from neurodegeneration in DBA/2J (D2) mice, which is a widely used mouse model of age-related inherited glaucoma.
Method: Oral NR or NAM administration (NR low dose: 1150mg/kg; NR high dose: 4200mg/kg; NAM low dose group: 500mg/kg; NAM high dose: 2000mg/kg of body weight per day) essentially started when D2 mice were 4 or 9 months old and continued up to 12 months old. Control cohort identically received food/water without NAM or NR.
Psychopharmacology (Berl)
December 2024
Department of Psychology, Sapienza University of Rome, Rome, Italy.
Rationale: The specific location of deviations from normative models of brain function varies considerably across individuals with the same diagnoses. However, as pathological processes are distributed across interconnected systems, this heterogeneity of individual brain deviations may also reveal similarities and differences between disorders. The paraventricular nucleus of the thalamus (PVT) is a potential switcher to various behavioral responses where functionally distinct cell types exist across its antero-posterior axis.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
Curr Issues Mol Biol
October 2024
VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA.
Recent studies have indicated that hindbrain [fourth ventricle (4V)] administration of the neurohypophyseal hormone, oxytocin (OT), reduces body weight, energy intake and stimulates interscapular brown adipose tissue temperature (T) in male diet-induced obese (DIO) rats. What remains unclear is whether chronic hindbrain (4V) OT can impact body weight in female high fat diet-fed (HFD) rodents and whether this involves activation of brown adipose tissue (BAT). We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of interscapular brown adipose tissue (IBAT) contributes to its ability to activate BAT and reduce body weight in female high HFD-fed rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!