Single neurons can dynamically change the gain of their spiking responses to take into account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM), to account for these adaptive effects. The GLM describes spiking as a Poisson process whose rate depends on a linear combination of the stimulus and recent spike history. The GLM successfully replicates gain scaling observed in Hodgkin-Huxley simulations of cortical neurons that occurs when the ratio of spike-generating potassium and sodium conductances approaches one. Gain scaling in the GLM depends on the length and shape of the spike history filter. Additionally, the GLM captures adaptation that occurs over multiple timescales as a fractional derivative of the stimulus envelope, which has been observed in neurons that include long timescale afterhyperpolarization conductances. Fractional differentiation in GLMs requires long spike history that span several seconds. Together, these results demonstrate that the GLM provides a tractable statistical approach for examining single-neuron adaptive computations in response to changes in stimulus variance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509073 | PMC |
http://dx.doi.org/10.3389/fnsys.2020.00060 | DOI Listing |
Unlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFThe competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales.
View Article and Find Full Text PDFOpen Res Eur
January 2025
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA.
The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.
View Article and Find Full Text PDFSyst Biol
January 2025
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
Obtaining a timescale for bacterial evolution is crucial to understand early life evolution but is difficult owing to the scarcity of bacterial fossils. Here, we introduce multiple new time constraints to calibrate bacterial evolution based on ancient symbiosis. This idea is implemented using a bacterial tree constructed with genes found in the mitochondrial lineages phylogenetically embedded within Proteobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!