Background: Semantic variant primary progressive aphasia (svPPA), a clinical syndrome characterized by loss of semantic knowledge, is associated with neurodegeneration that starts in the anterior temporal lobe (ATL) and gradually spreads towards posterior temporal and medial frontal areas. At the earliest stages, atrophy may be predominantly lateralized to either the left or right ATL, leading to different clinical profiles with greatest impairment of word comprehension or visual/social semantics, respectively.
Methods & Procedures: We report the in-depth longitudinal investigation of cognitive and neuroanatomical features of JB, an unusual case of ATL neurodegeneration with relative sparing of left lateral ATL regions.
Outcomes & Results: Over the course of nine years, neurodegeneration progressed to involve bilateral temporo-lateral and frontal regions, resulting in a relatively symmetric and diffuse frontotemporal atrophy pattern. In parallel, JB developed greater behavioral, cognitive, and language impairments, as well as signs of motor neuron disease at her last evaluation. Episodic memory and socio-emotional processing deficits arose, likely secondary to semantic verbal deficits, while visuospatial processing, executive function, and non-semantic language abilities remained largely unaffected throughout the course of the disease.
Conclusions: The details of this rare case of early medial more than lateral ATL degeneration are consistent with a bilateral organization of the semantic system and, crucially, with a functional dissociation between medial paralimbic and lateral neocortical temporal regions. Cases of frontotemporal dementia (FTD) such as JB, who initially do not meet current clinical criteria for svPPA and instead present with some features of behavioral variant FTD, highlight the need for specific criteria for the right temporal variant of FTD that we propose could be called semantic variant FTD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529336 | PMC |
http://dx.doi.org/10.1080/02687038.2019.1659935 | DOI Listing |
J Neuropathol Exp Neurol
December 2024
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Although Alzheimer disease neuropathologic change (ADNC) is the most common pathology underlying clinical dementia, the presence of multiple comorbid neuropathologies is increasingly being recognized as a major contributor to the worldwide dementia burden. We analyzed 1051 subjects with specific combinations of isolated and mixed pathologies and conducted multivariate logistic regression analysis on a cohort of 4624 cases with mixed pathologies to systematically explore the independent cognitive contributions of each pathology. Alzheimer disease neuropathologic change and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) were both associated with a primary clinical diagnosis of Alzheimer disease (AD) and were characterized by an amnestic dementia phenotype, while only ADNC associated with logopenic variant primary progressive aphasia (PPA).
View Article and Find Full Text PDFNeurocase
December 2024
First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece.
Mutations in sequestosome 1 (SQSTM1) gene have been associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia - ALS (FTD-ALS), and very recently, progressive supranuclear palsy (PSP), paget disease of bone (PDB), distal myopathy with rimmed vacuoles (DMRV), and neurodegenerative disorders in childhood. We present a case of right temporal variant of FTD (rtvFTD) with heterozygous mutation (c.823_824del(p.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
December 2024
Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, University of Cagliari, Cagliari, Italy.
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, characterized by varying clinical and pathological features. gene has been described worldwide within the FTD/ALS spectrum but its association with right and left temporal variant of FTD (tvFTD) is still unclear. This study aimed to reclassify a Sardinian FTD cohort according to proposed criteria for the semantic behavioral variant FTD (sbvFTD), explore mutations' association with tvFTD, and review related literature.
View Article and Find Full Text PDFNeurocase
December 2024
Department of Neurology, The Barbara and Maurice Deane Center for Wellness and Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, USA.
A 75-year-old Chinese American man presented to behavioral neurology clinic for a second opinion of dementia with Lewy body disease (DLB). The clinical manifestations met the criteria for a probable DLB diagnosis. Yet, in-depth evaluation unveiled clinical history, family history, and neuroimaging evidences that suggested a diagnosis of behavioral variant frontotemporal dementia (FTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!