The aim of the present study was to identify a strain of endophytic Bacillus species that control tomato bacterial wilt by foliar spray application. Fifty heat-tolerant endophytic bacteria were isolated from the surface-sterilized foliar tissues of symptomless tomato plants that had been pre-inoculated with the pathogen Ralstonia pseudosolanacearum. In the primary screening, we assessed the suppressive effects of a shoot-dipping treatment with bacterial strains against bacterial wilt on tomato seedlings grown on peat pellets. Bacillus sp. strains G1S3 and G4L1 significantly suppressed the incidence of tomato bacterial wilt. In subsequent pot experiments, the biocontrol efficacy of foliar spray application was examined under glasshouse conditions. G4L1 displayed consistent and significant disease suppression, and, thus, was selected as a biocontrol candidate. Moreover, the pathogen population in the stem of G4L1-treated plants was markedly smaller than that in control plants. A quantitative real-time PCR analysis revealed that the foliar spraying of tomato plants with G4L1 up-regulated the expression of PR-1a and LoxD in stem and GluB in roots upon the pathogen inoculation, implying that the induction of salicylic acid-, jasmonic acid-, and ethylene-dependent defenses was involved in the protective effects of this strain. In the re-isolation experiment, G4L1 efficiently colonized foliar tissues for at least 4 weeks after spray application. Collectively, the present results indicate that G4L1 is a promising biocontrol agent for tomato bacterial wilt. Furthermore, to the best of our knowledge, this is the first study to report the biocontrol of bacterial wilt by the foliar spraying with an endophytic Bacillus species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734409 | PMC |
http://dx.doi.org/10.1264/jsme2.ME20078 | DOI Listing |
Phytopathology
January 2025
Virginia Polytechnic Institute and State University, School of Plant and Environmental Science, Blacksburg, Virginia, United States;
Mar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFFront Microbiol
December 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India.
The increasing health and environmental risks associated with synthetic chemical pesticides necessitate the exploration of safer, sustainable alternatives for plant protection. This study investigates a novel biosynthesized antimicrobial peptide (AMP) from strain IT, identified as the amino acid chain PRKGSVAKDVLPDPVYNSKLVTRLINHLMIDGKRG, for its efficacy in controlling bacterial wilt (BW) disease in tomato () caused by . Our research demonstrates that foliar application of this AMP at a concentration of 200 ppm significantly reduces disease incidence by 49.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China.
Cytokinin signalling plays both positive and negative roles in plant resistance to pathogens. It is not clear whether the role of cytokinin changes at the different stages of pathogen infection. Arabidopsis thaliana sequentially exhibits distinct root morphological symptoms during Ralstonia solanacearum infection, which offers a good system to investigate function of cytokinin in the whole pathogen infection process.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Microbial pathogens and other parasites can modify the development of their hosts, either as a target or a side effect of their virulence activities. The plant-pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soilborne microbe that invades host plants through their roots and later proliferates in xylem vessels. In this work, we studied the early stages of R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!