Data on influenza vaccine immunogenicity in children are limited from tropical developing countries. We recently reported significant, moderate effectiveness of a trivalent inactivated influenza vaccine (IIV) in a controlled, cluster-randomized trial in children in rural Senegal during 2009, a year of H3N2 vaccine mismatch (NCT00893906). We report immunogenicity of IIV3 and inactivated polio vaccine (IPV) from that trial. We evaluated hemagglutination inhibition (HAI) and polio antibody titers in response to vaccination of three age groups (6 through 35 months, 3 through 5 years, and 6 through 8 years). As all children were IIV naïve, each received two vaccine doses, although titers were assessed after only the first dose for subjects aged 6 through 8 years. Seroconversion rates (4-fold titer rise or increase from <1:10 to ≥1:40) were 74-87% for A/H1N1, 76-87% for A/H3N2, and 54-79% for B/Yamagata. Seroprotection rates (HAI titer ≥ 1:40) were 79-88% for A/H1N1, 88-96% for A/H3N2, and 52-74% for B/Yamagata. IIV responses were lowest in the youngest age group, and they were comparable between ages 3 through 5 years after two doses and 6 through 8 years after one dose. We found that baseline seropositivity (HAI titer ≥ 1:10) was an effect modifier of IIV response. Using a seroprotective titer (HAI titer ≥ 1:160) recommended for IIV evaluation in children, we found that among subjects who were seropositive at baseline, 69% achieved seroprotection for both A/H1N1 and A/H3N2, while among those who were seronegative at baseline, seroprotection was achieved in 11% for A/H1N1 and 22% for A/H3N2. The IPV group had high baseline polio antibody seropositivity and appropriate responses to vaccination. Our data emphasize the importance of a two-dose IIV3 series in vaccine naïve children. IIV and IPV vaccines were immunogenic in Senegalese children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936169 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2020.09.059 | DOI Listing |
Poult Sci
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, West Java, 40132, Indonesia; Faculty of Pharmacy, Universitas Bhakti Kencana, West Java, 40614, Indonesia.
Avian influenza is a significant threat to the poultry industry, and it has become an outbreak in many countries because of its mortality and morbidity. Concerns about the history of avian influenza outbreaks has prompted all countries to enhance their independence in pharmaceutical and biological components as a preparedness measure for any potential occurrences. The production of antibodies such as IgY is a potential alternative.
View Article and Find Full Text PDFPLoS Pathog
January 2025
School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Long non-coding RNAs (lncRNAs) are essential components of innate immunity, maintaining the functionality of immune systems that control virus infection. However, how lncRNAs engage immune responses during influenza A virus (IAV) infection remains unclear. Here, we show that lncRNA USP30-AS1 is up-regulated by infection of multiple different IAV subtypes and is required for tuning inflammatory and antiviral response in IAV infection.
View Article and Find Full Text PDFJ Infect Dis
January 2025
College of Public Health, University of Georgia, Athens, GA, USA.
Background: Older adults often mount a weak immune response to standard inactivated influenza vaccines. To induce a stronger response and better protection, a high-dose (HD) version of the inactivated Fluzone vaccine is recommended for individuals >65 years of age. While better immunogenicity and protection against the vaccine strain has been shown, it is not known if the HD vaccine also induces a robust antibody response to heterologous strains.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal.
Haematopoietic stem cell transplantation (HCT) induces profound immunosuppression, significantly increasing susceptibility to severe infections. This review examines vaccinations' necessity, timing, and efficacy post-HCT to reduce infection-related morbidity and mortality. It aims to provide a structured protocol aligned with international and national recommendations.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!