The effect of gene flow from unsampled demes in landscape genetic analysis.

Mol Ecol Resour

USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ, USA.

Published: February 2021

An assumption of correlative landscape genetic methods is that genetic differentiation at neutral markers arises solely from the degree to which the intervening landscape between individuals or populations resists gene flow. However, this assumption is violated when gene flow occurs into the sampled population from an unsampled, differentiated deme. This may happen when sampling within only a portion of a population's extent or when closely related species hybridize with the sampled population. In both cases, violation of the modelling assumptions has the potential to reduce landscape genetic model selection accuracy and result in poor inferences. We used individual-based population genetic simulations in complex landscapes within a model selection framework to explore the potential confounding effect of gene flow from unsampled demes. We hypothesized that as gene flow from outside the sampling extent increased, model selection accuracy would decrease due to the formation of a hybrid zone where allele frequencies were perturbed in a way that was not correlated with effective distances between sampled individuals. Surprisingly, we found this expectation was unfounded, because the reduced accuracy due to admixture was counteracted by an increase in allelic diversity as alleles spread from the unsampled deme into the sampled population. These new alleles increased the power to detect landscape genetic relationships and even slightly improving model selection accuracy overall. This is a reassuring result, suggesting that sampling the full extent of a population or related species that may hybridize may be unnecessary, as long as other well-established sampling requirements are met.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13267DOI Listing

Publication Analysis

Top Keywords

gene flow
20
landscape genetic
16
model selection
16
sampled population
12
selection accuracy
12
flow unsampled
8
unsampled demes
8
species hybridize
8
genetic
6
gene
5

Similar Publications

A phylogenetic approach to delimitate species in a probabilistic way.

Syst Biol

January 2025

Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra ACT 0200 Australia.

Different species concepts and their associated criteria have been used to delimit species boundaries, such as the absence of gene flow for the biological species concept and the presence of morphological distinction for the morphological species concept. The need for different delimitation criteria largely reflects the fact that species are generated under various speciation mechanisms. A key question is how to make species delimitation consistent in a species group, especially when we want to delimit the species boundaries over many newly discovered evolutionary lineages and add these new lineages into a comparative analysis.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Prognostic Value of Dynamic Measurable Residual Disease Monitoring by Multiflowcytometry in Elderly Patients With Nonintensively Treated Acute Myeloid Leukemia.

Clin Lymphoma Myeloma Leuk

January 2025

Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:

Purpose: The clinical prognostic value of monitoring minimal residual disease (MRD) in acute myeloid leukemia (AML) patients undergoing nonintensive treatment remains insufficiently established. The aim of this work was to examine MRD status at various time points, highlighting the potential for pre-emptive therapy to improve patient outcomes.

Methods: Inpatient data from 2017 to 2024 were used in this retrospective study.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!