Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiovascular diseases are key complications primarily associated with hyperthyroidism disorders. The present study sought to ameliorate hyperthyroidism-mediated cardiovascular inflammations and related oxidative stress paradigms in experimental rats using the broadly distributed green seaweed Ulva fasciata. Forty-eight adult male albino rats were recruited and randomly classified into six groups. Hyperthyroidism was stimulated using L-thyroxine sodium at a dose of 100 μg/kg i.p. for 3 weeks daily. Further, 200 mg/kg b.wt. concentration of the U. fasciata methanolic (U. fasciata-MeOH) extract was the recommended dose and administrated orally to the hyperthyroid rats. The standard commercial drug "propranolol hydrochloride" was also tested at a dose of 10 mg/kg i.p. to compare the findings obtained from the seaweed extract. A combined treatment with the U. fasciata-MeOH extract and propranolol hydrochloride was also assessed. Our results implied that the treatment of hyperthyroid rats with the U. fasciata-MeOH extract significantly reduced serum levels of the thyroid hormones T3 and T4, proinflammatory cytokines (TNF-α, MPO, and CRP), triglycerides and total cholesterol, as well as the cardiac biomarkers CK-MB, LDH, and troponin to thresholds close to those of the standard drug. In addition, levels of high-density lipoprotein cholesterol (HDL-C) and interleukin 10 (IL-10) were significantly upregulated. Hyperthyroid rats only treated with propranolol hydrochloride, or with a combination of the drug and the seaweed extract, conferred the same observations. Histopathological architecture boosted our interesting findings where the myocardium tissues in hyperthyroid rats, administrated the U. fasciata-MeOH extract or/and propranolol hydrochloride, exhibited more or less a normal structure as the control, reflecting the potential cardiovascular recovery exerted by this seaweed extract. In vitro DPPH, ABTS, and FRAP antioxidant assays of the U. fasciata-MeOH extract showed an outstanding ROS-scavenging potential. HPLC analysis of the U. fasciata-MeOH extract unraveled an inestimable valuable array of phenolics (mainly p-coumaric, gallic, ferulic, chlorogenic, and syringic acids) and flavonoids (hesperidin, kaempferol, catechin, quercetin, and rutin). Conclusively, the seaweed U. fasciata is a profitable source of antioxidant polyphenolics characterized by having a pharmaceutical potential against hyperthyroidism-linked cardiovascular inflammations and oxidative stress patterns due to their substantial free radical quenching properties, and also via regulating the signalling pathways of the proinflammatory, lipid profile, and cardiac biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11036-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!