Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative defense, detoxification and transport of Cd in the kidneys of scallops by transcriptome analysis. A total of 598 differentially expressed genes including 387 up-regulated and 211 down-regulated ones were obtained during Cd exposure, and 46 up-regulated and 260 down-regulated ones were obtained during depuration. Cadmium exposure could cause oxidative stress in the kidneys, which was particularly shown in the pathways involved in proteasome and oxidative phosphorylation. The mRNA expression of 5 metallothionein (MT) genes were overexpressed under Cd exposure and significantly decreased during Cd depuration, which played a vital role in Cd chelation and detoxification. The expression of divalent metal transporter (DMT) genes were down-regulated insignificantly during accumulation and depuration of Cd, which suggested that the DMT played little roles in Cd transport in scallops. A positive relationship in the expression of the zinc transporter (ZIP6 and ZIP1) genes with Cd exposure and depuration was observed, which confirmed its important role for Cd uptake in the kidneys of scallops. 26S proteasome activities and MT expression were Cd-dependent. This study supplied the important reference on the hyperaccumulation of Cd by scallops and identified some effective bioindicators for the environmental risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-020-00257-xDOI Listing

Publication Analysis

Top Keywords

transcriptome analysis
8
kidneys scallops
8
hyperaccumulation cadmium
4
cadmium scallop
4
scallop chlamys
4
chlamys farreri
4
farreri revealed
4
revealed comparative
4
comparative transcriptome
4
analysis cadmium
4

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!