Vaginal neutrophils eliminate sperm by trogocytosis.

Hum Reprod

Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

Published: November 2020

Study Question: What is the vaginal polymorphonuclear (PMN) spermicidal mechanism to reduce the excess of sperm?

Summary Answer: We show that PMNs are very efficient at killing sperm by a trogocytosis-dependent spermicidal activity independent of neutrophil extracellular traps (NETs).

What Is Known Already: Trogocytosis has been described as an active membrane exchange between immune cells with a regulatory purpose. Recently, trogocytosis has been reported as a mechanism which PMNs use to kill tumour cells or Trichomonas vaginalis.

Study Design, Size, Duration: We used in vivo murine models and human ex vivo sperm and PMNs to investigate the early PMN-sperm response.

Participants/materials, Setting, Methods: We set up a live/dead sperm detection system in the presence of PMNs to investigate in vivo and ex vivo PMN-spermicidal activity by confocal microscopy, flow cytometry and computer-assisted sperm analysis (SCA).

Main Results And The Role Of Chance: We revealed that PMNs are highly efficient at killing sperm by way of a NETs-independent, contact-dependent and serine proteases-dependent engulfment mechanism. PMNs 'bite' sperm and quickly reduce sperm motility (within 5 min) and viability (within 20 min) after contact.

Large Scale Data: N/A.

Limitations, Reasons For Caution: This study was conducted using murine models and healthy human blood PMNs; whether it is relevant to human vaginal PMNs or to cases of infertility is unknown.

Wider Implications Of The Findings: Vaginal PMNs attack and immobilize excess sperm in the vagina by trogocytosis because sperm are exogenous and may carry pathogens. Furthermore, this mechanism of sperm regulation has low mucosal impact and avoids an exacerbated inflammatory response that could lead to mucosal damage or infertility.

Study Funding/competing Interest(s): This work was partially supported by Ministry of Economy and Competitiveness ISCIII-FIS grants, PI16/00050, and PI19/00078, co-financed by ERDF (FEDER) Funds from the European Commission, 'A way of making Europe' and IiSGM intramural grant II-PI-MRC-2017. M.R. holds a Miguel Servet II contract (CPII14/00009). M.C.L. holds IiSGM intramural contract. There are no competing interests.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/deaa198DOI Listing

Publication Analysis

Top Keywords

sperm
11
pmns
9
efficient killing
8
killing sperm
8
mechanism pmns
8
murine models
8
pmns investigate
8
vaginal pmns
8
iisgm intramural
8
vaginal
4

Similar Publications

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

The precise mechanisms behind early embryonic arrest due to sperm-related factors and the most effective strategies are not yet fully understood. Here, we present two cases of male infertility linked to novel variants, associated with oligoasthenoteratozoospermia (OAT) and early embryonic arrest. To investigate the underlying mechanisms and promising therapeutic approaches, knock-in and knock-out mice were generated.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Social circuitry of the mammalian brain can influence male reproductive physiology. This often manifests as plasticity in sperm production or allocation, particularly in response to male-male competition. However, socially mediated testicular plasticity has not been investigated with respect to mating and parental strategy.

View Article and Find Full Text PDF

The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!