The objective of this experiment was to evaluate the growth performance and bone mineral content (BMC) of nursery pigs in response to increasing total calcium (Ca) to available phosphorus (aP) ratios in diets containing phytase (250 FTU/kg; Natuphos E, BASF, Florham Park, NJ). A total of 480 nursery pigs (body weight (BW) = 5.7 ± 0.6 kg) with 10 pigs per pen and 7 pens per treatment (6 pens fed 2.75:1 diet) were allotted to seven treatments consisting of increasing ratios of calcium to available phosphorus (Ca:aP): 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 2.75. From day -7 to 0, pigs were fed a common diet. They were then fed the treatment diets during two experimental phases from day 1 to 14 and 15 to 28, respectively. Available P was formulated to 0.33% and 0.27% (approximately 90% of requirement) in dietary phases 1 and 2, respectively. BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. BMC of the femur was measured on day 28 on one pig per pen using dual x-ray absorptiometry. Data were analyzed as a linear mixed model using PROC MIXED (SAS, 9.3). Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing the Ca:aP. Over the 28-d experimental period, increasing Ca:aP resulted in a linear decrease in ADG (353, 338, 328, 304, 317, 291, and 280 g/d; P < 0.01), ADFI (539, 528, 528, 500, 533, 512, and 489 g/d; P < 0.05), and G:F (0.68, 0.66, 0.64, 0.62, 0.61, 0.59, and 0.58; P < 0.01). Increasing Ca:aP also resulted in decreased BW on days 14 and 28 (P < 0.01). The BMC of the femur decreased with increasing Ca:aP (6.2, 6.3, 5.7, 5.9, 5.5, 5.6, and 5.3 g; P < 0.05). Regression analysis explained the impact of Ca:aP as follows on ADG (ADG [g/d] = 339 - 36x; r2 = 0.81), G:F (G:F = 0.61 - 0.03x; r2 = 0.72), and BMC (BMC [g] = 6.4 - 0.27x; r2 = 0.43), where x is the Ca:aP. In conclusion, all outcomes indicated that any level of calcium above the minimum used in this experiment impaired growth performance and skeletal development. Further research using even lower levels of dietary Ca is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751169PMC
http://dx.doi.org/10.1093/jas/skaa325DOI Listing

Publication Analysis

Top Keywords

increasing caap
16
growth performance
12
nursery pigs
12
calcium phosphorus
12
performance bone
8
pigs fed
8
phosphorus ratios
8
average daily
8
bmc femur
8
increasing
7

Similar Publications

Mercury pollution control and Marphysa sanguinea bio-response in active-capped sediment with calcium alginate/activated carbon composite.

J Hazard Mater

January 2025

Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106319, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106319, Taiwan. Electronic address:

Anthropogenic and industrial activities have released large amounts of mercury (Hg) into the hydrosphere. Hg ultimately deposits in sediments and could be re-released into the water environment, threatening the ecological system. Active capping is considered a suitable remediation method due to its relatively low cost and in-situ decontamination feasibility.

View Article and Find Full Text PDF

Background: Health insurers have increased the use of copay accumulator adjustment programs (CAAPs) to control costs; however, some states within the United States have banned the use of CAAPs to protect patients from rising out-of-pocket expenses.

Objective: To assess the impact of state CAAP bans on patient liability, treatment adherence, and treatment persistence.

Methods: This was a retrospective cohort study using administrative claims recorded in the IQVIA PharMetrics Plus database.

View Article and Find Full Text PDF

Dry deposition fluxes and inhalation risks of toxic elements in total suspended particles in the Bohai Rim region: Long-term trends and potential sources.

J Hazard Mater

August 2024

State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China. Electronic address:

Long-term changes in dry deposition fluxes (DDF) and health risks for toxic elements (TE) in total suspended particles (TSP) in the Bohai Rim region are important for assessing control effects of pollution sources. Thus, we investigated the trends in DDF and concentrations for TSP and TE and health risks of TE in eight cities in the region from 2011-2020. TSP concentration and DDF showed general downward trends.

View Article and Find Full Text PDF

Decline in pneumococcal nasopharyngeal carriage in children 6-23 months with respiratory illnesses following pneumococcal conjugate vaccine implementation.

Vaccine

September 2021

The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel. Electronic address:

Background: Following pneumococcal conjugate vaccines (PCVs) implementation, worldwide, pneumococcal carriage rates remained stable, indicating full replacement of vaccine-serotypes (VT) with non-VT. However, data are scarce regarding PCV impact on pneumococcal carriage rates in healthy vs. sick children.

View Article and Find Full Text PDF

The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10-15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!