Soil-applied biochar has been reported to possess the potential to mitigate nitrate leaching and thus, exert beneficial effects beyond carbon sequestration. The main objective of the present study is to confirm if a pine gasification biochar that has proven able to decrease soil-soluble nitrate in previous research can indeed exert such an effect and to determine by which mechanism. For this purpose, lysimeters containing soil-biochar mixtures at 0, 12 and 50 t biochar ha were investigated in two different scenarios: a fresh biochar scenario consisting of fresh biochar and a fallow-managed soil, and an aged biochar scenario with a 6-yr naturally aged biochar in a crop-managed soil. Soil columns were assessed under a mimicked Mediterranean ambient within a greenhouse setting during an 8-mo period which included a barley crop cycle. A set of parameters related to nitrogen cycling, and particularly to mechanisms that could directly or indirectly explain nitrate content reduction (i.e., sorption, leaching, microbially-mediated processes, volatilisation, plant uptake, and ecotoxicological effects), were assessed. Specific measurements included soil solution and leachate ionic composition, microbial biomass and activity, greenhouse gas (GHG) emissions, N and O isotopic composition of nitrate, crop yield and quality, and ecotoxicological endpoints, among others. Nitrate content reduction in soil solution was verified for the fresh biochar scenario in both 12 and 50 t ha treatments and was coupled to a significant reduction of chloride, sodium, calcium and magnesium. This effect was noticed only after eight months of biochar application thus suggesting a time-dependent process. All other mechanisms tested being discarded, the formation of an organo-mineral coating emerges as a plausible explanation for the ionic content decrease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142430 | DOI Listing |
Sci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.
The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!