A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aerobic degradation and the effect of hexabromocyclododecane by soil microbial communities in Taiwan. | LitMetric

Aerobic degradation and the effect of hexabromocyclododecane by soil microbial communities in Taiwan.

Environ Int

Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. Electronic address:

Published: December 2020

Hexabromocyclododecane (HBCD) is one of the most frequently used brominated flame retardants (BFRs) in the industries nowadays. Despite being listed as persistent organic pollutant (POP), it is still in use until 2025. Because of its bio-accumulative and toxic characteristics, the applicable remediation approach is required. The aim of this study is to identify the microbial community from soil with HBCD degradation ability. The soil suspension and soil samples from Chiang Chun Soil and River Bank Soil showed to degrade HBCD by 60% 4 days after treatment, the debromination ratio was around 60%, and the total HBCD removal ratio reached 70% and 77.9%, respectively. The HBCD debromination metabolites, and oxidation metabolites were identified by GC-MS. The microbial taxonomic diversity was observed with DGGE approach to evaluate the effect of HBCD of microbial community. Bacillus spp. and Clostridium spp. were identified as the dominant microbes in the Chiang Chun Soil, but the amount of Bacillus spp. were showed to be affected by HBCD. In conclusion, HBCD could be removed by the microbial consortium in soil under aerobic culturing condition by various metabolic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.106128DOI Listing

Publication Analysis

Top Keywords

soil
8
hbcd
8
microbial community
8
chiang chun
8
chun soil
8
bacillus spp
8
microbial
5
aerobic degradation
4
degradation hexabromocyclododecane
4
hexabromocyclododecane soil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!