Functional neuroimaging of small brainstem structures in humans is gaining interest due to their potential importance in aging and many clinical conditions. Researchers have used different methods to measure activity in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. However, the extent to which these different LC localization methods yield similar results is unclear. In the present article, we compared four different approaches to estimate localization of the LC in a large sample (N = 98): 1) a probabilistic map from a previous study, 2) masks segmented from neuromelanin-sensitive scans, both manually and semi-automatically, 3) components from a masked-independent components analysis of the functional data, and 4) a mask from pupil regression of the functional data. The four methods have all been used previously in the imaging community to localize the LC in vivo in humans. We report several measures of similarity between the LC masks obtained from the different methods. In addition, we compare functional connectivity maps obtained from the different masks. We conclude that sample-specific masks appear more suitable than masks obtained from an independent sample, that masks based on structural versus functional methods may capture different portions of LC, and that, at the group level, the creation of a "consensus" mask using more than one approach may give a better estimate of LC localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2020.117409 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFCell
December 2024
Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA. Electronic address:
As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.
View Article and Find Full Text PDFPsychophysiology
January 2025
Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.
View Article and Find Full Text PDFBrain Stimul
January 2025
Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Dublin, Ireland. Electronic address:
CNS Neurosci Ther
January 2025
Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Objective: Our aim was to research the neuromelanin-sensitive magnetic resonance imaging (NM-MRI) features of the locus coeruleus (LC) in essential tremor (ET) patients of various cognitive states and to explore the relationships between these features and cognition.
Methods: We recruited three groups of participants, including 30 ET patients with mild cognitive impairment (ET-MCI), 57 ET patients with normal cognition (ET-NC), and 105 healthy controls (HCs). All participants underwent MRI scanning and clinical evaluation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!