Among all immune cells, dendritic cells (DC) are the most potent APCs in the immune system and are central players of the adaptive immune response. There are phenotypically and functionally distinct DC populations derived from blood and lymphoid organ including plasmacytoid DC (pDC), conventional DC (cDC1 and cDC2) and monocyte-derived DC (moDC). The interaction between these different DCs and tumors is a dynamic process where DC-mediated cross-priming of tumor specific T cells is critical in initiating and sustaining anti-tumor immunity. Their presence within the tumor tends to induce T cell responses and to reduce cancer progression and is associated with improved patient survival. This review will focus on the distinct tumor-associated DCs (TADC) subsets in the tumor microenvironment (TME), their roles in tumor immunology and their prognostic and/or predictive impact in human cancers. The development of therapeutic immunity strategies targeting TADC is promising to enhance their immune-stimulatory capacity in cancers and improve the efficacy of current immunotherapies including immune checkpoint inhibitor (ICI) blockade and DC-based therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.smim.2020.101410 | DOI Listing |
Acta Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China. Electronic address:
Sepsis is a fatal organ dysfunction characterized by the simultaneous hyperinflammation and immunosuppression. Nowadays, the early precision intervention of sepsis is challenging. Ferroptosis is involved in the development of sepsis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. Electronic address:
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China. Electronic address:
Chemotherapy combined with immunotherapy is a highly promising approach for treating tumors. However, chemotherapeutic drugs often fail to accumulate effectively at the tumor site after systemic administration and they lack sufficient immunogenicity to activate adaptive immunity, making an effective T-cell immune response within the tumor microenvironment difficult to achieve. Here, this work developed drug-loaded nanobubbles (DTX-R837@NBs) that encapsulate the chemotherapy drug docetaxel and the immune adjuvant R837 via a thin-film hydration method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!