Objectives: Understand how discontinuous short glass fibers and braided long fibers can be effectively used to reinforce a resin modified glass ionomer cement (RMGIC) for carious lesion restorations.
Methods: Two control groups (powder/liquid kit and capsule) were prepared from a light cured RMGIC. Either discontinuous short glass fibers or braided polyethylene fiber ribbons were used as a reinforcement both with and without pre-impregnation with resin. For the former case, the matrix was the powder/liquid kit RMGIC, and for the latter case the matrix was the capsule form. Flexural strength was evaluated by three-point beam bending and fracture toughness was evaluated by the single-edge V-notch beam method. Compressive strength tests were performed on cylindrical samples. Results were compared by analysis of variances and Tukey's post-hoc test. Flexural strength data were analyzed using Weibull statistical analysis.
Results: The short fiber reinforced RMGIC both with and without pre-impregnation showed a significant increase of ∼50% in the mean flexural strength and 160-220% higher fracture toughness compared with the powder/liquid RMGIC control. Reinforcement with continuous braided fibers gave more than a 150% increase in flexural strength, and pre-impregnation of the braided fibers with resin resulted in a significant flexural strength increase of more than 300% relative to the capsule control. However, for the short fiber reinforced RMGIC there was no significant benefit of resin pre-impregnation of the fibers. The Weibull modulus for the flexural strength approximately doubled for the fiber reinforced groups compared to the control groups. Finally, compressive strength was similar for all the groups tested.
Significance: By using a RMGIC as a matrix, higher flexural strength was achieved compared to reported values for short fiber reinforced GICs. Additionally, the short fibers provided effective toughening of the RMGIC matrix by a fiber bridging mechanism. Finally, continuous braided polyethylene fibers gave much higher flexural strength than discontinuous glass fibers, and their effectiveness was enhanced by pre-impregnation of the fibers with resin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2020.09.003 | DOI Listing |
ACS Omega
January 2025
Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
This study investigates the reinforcement of cement paste with woven fabrics made from recycled poly(ethylene terephthalate) (PET) bottle yarn, aiming to enhance its mechanical properties while addressing PET waste. PET bottles were transformed into yarn with a denier of 3,593.8, strength of 91.
View Article and Find Full Text PDFACS Omega
January 2025
Faculty of Materials Science and Technology, Kim Chaek University of Technology, Pyongyang 999093, Democratic People's Republic of Korea.
Metal injection molding (MIM) is an advanced manufacturing technology for producing complex metal parts with precise dimensions. Multiattribute decision making (MADM) can convert multiple quality attributes into a single overall quality score (OQS). To improve multiple quality attributes of the MIM compacts, a reasonable multiobjective optimization method should be applied.
View Article and Find Full Text PDFAdv Mater
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Cellulose nanofibers (CNFs) are ideal building blocks for creating lightweight and strong bulk structural materials due to their unique supramolecular structure and exceptional mechanical properties within the crystalline regions. However, assembling CNFs into dense bulk structural materials with customizable shape and functionalities remains a great challenge, hindering their practical applications. Here, the dewatering issue of aqueous CNF dispersions is addressed by regulating supramolecular scale hydrophilicity using lactic acid, combined with hot-press molding.
View Article and Find Full Text PDFJ Dent
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Objectives: Highly translucent yttria-stabilized zirconia (YSZ) has become more popular due to its enhanced aesthetics. This study aimed to evaluate the influence of traditional air abrasion and a new etching and cleaning agent, Multi Etchant, on the mechanical performance, optical properties, and bond strength of highly translucent zirconia.
Methods: Specimens of 6YSZ, 5YSZ, 4YSZ&5YSZ, and conventional 3YSZ were fabricated and underwent different surface treatments, including as milled, air abrasion, and Multi Etchant.
Dent Mater
January 2025
Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Bauru, SP, Brazil.
Objective: To synthesize bilayer zirconia systems based on commercial or recycled 3Y-TZP obtained from non-milled remnants and to compare their optical and mechanical properties before and after aging.
Methods: Bilayer zirconia samples were fabricated using either recycled 3Y-TZP (3Y-R/4Y and 3Y-R/5Y) or commercial powders (3Y/4Y and 3Y/5Y). Microstructure and phase composition were analyzed using ScanningElectronMicroscopy (SEM) and X-Ray Diffraction (XRD).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!