A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Abnormal knee kinematics caused by mechanical alignment in symmetric bicruciate-retaining total knee arthroplasty are alleviated by kinematic alignment. | LitMetric

Background: Bicruciate-retaining total knee arthroplasty (BCR-TKA) was developed to maintain anterior cruciate ligament function and thus reproduce natural knee kinematics postoperatively. Traditional surgical techniques, however, may cause several complications secondary to kinematic conflict and ligament overtension. The objective of this study was to use a computer simulation of symmetric BCR-TKA to evaluate the effects of alternative surgical techniques on knee kinematics and ligaments.

Methods: A musculoskeletal computer model of a healthy knee was constructed and was used to simulate a BCR model with mechanical alignment (MA). Five adjusted models were investigated, characterized, respectively, by kinematic alignment (KA), two degrees increased tibial slope, two-millimeter distal setting of the tibial component, and an undersized femoral component with either MA or KA.

Results: All models exhibited a normal femoral position against the tibia at knee extension, with no anterior paradoxical motion during mid-flexion. The healthy knee model showed medial pivot motion and rollback. In contrast, the BCR MA model demonstrated abnormal bi-condylar rollback with excessive tensions of the lateral collateral ligament and posterior cruciate ligament during knee flexion, whereas the undersized femoral model with MA partly reduced both tensions. The BCR KA model retained relatively physiological kinematics and suppressed excessive ligament tensions. However, no adjusted model completely reproduced healthy knee conditions.

Conclusions: The BCR MA model showed abnormal biomechanics due to kinematic conflict between the retained ligaments and the replaced joint surface. Surgeons using symmetric BCR-TKA should consider using the KA method to achieve sufficient ligament laxity throughout knee flexion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.knee.2020.07.099DOI Listing

Publication Analysis

Top Keywords

bcr model
16
knee kinematics
12
healthy knee
12
knee
10
mechanical alignment
8
bicruciate-retaining total
8
total knee
8
knee arthroplasty
8
kinematic alignment
8
cruciate ligament
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!