AI Article Synopsis

  • Boron (B) is believed to be important for bone growth and helps regulate minerals like calcium, phosphorus, and magnesium, which work together with vitamin D.
  • The study aimed to investigate the effects of different levels of boric acid (BA) supplementation on the bone health of growing crossbred calves over two phases.
  • Results indicated that higher doses of BA (200 and 400 ppm) positively influenced various bone health markers, such as plasma levels of alkaline phosphatase and osteocalcin, but did not change the levels of certain other markers like TRAP.

Article Abstract

Introduction: Boron (B) is thought to play key role in proper bone growth and development as well as have some role in regulation of minerals such as calcium (Ca), phosphorus (P) and magnesium (Mg) which act synergistically with vitamin D.

Objective: Present study was planned in two phases to assess the effect of optimum and supranutritional levels of (B) in the form of boric acid (BA) supplementation on bone health of growing cross bred calves.

Method: During Phase-1, twenty four male crossbred calves were blocked into four groups (n = 6) on the basis of their body weight (154.83 ± 8.5 kg), age (7-9 months) and were supplemented with 0 (C), 2.6 (T-1), 5.4 (T-2) and 10.7 (T-3) g BA for appropriate B (0.175 adjustment factor to calculate B form BA) consumption i.e. 0, 100, 200 and 400 ppm in each group respectively, for 90 days. During phase 2, twenty-one male crossbred calves were divided into 3 groups (n = 7) on the basis of their body weight (103.76 ± 4.34 kg) and age (5-8 months). All the groups were on similar dietary regimen with additional supplementation of boric acid as 0 g (control); 3.6 g (200 ppm B; T-1) and 10.8 g (600 ppm B; T-2), respectively for a period of 120 d.

Results: From the first experiment it is reported that plasma levels of bovine alkaline phosphatase (BALP), type I collagen cross-linked N-telopeptide (NTx) and Ca were significantly (P < 0.05) affected in T-2 and T-3 groups as compared to T-1 and control groups. Whereas, plasma osteocalcin (OCN) concentration was found to be higher in T-2 and T-3 groups as compared to control group. However, plasma concentrations (ng/mL) of tartrate resistant acid phosphatase (TRAP) remained unaltered due to dietary treatments. Based on the results, another experiment was conducted to validate the above findings and further to determine the effect of still higher i.e supranutritional levels of BA supplementation on bone health of calves. Results revealed that supplementation of BA in T-2 group had no beneficial effect on bone health as the plasma concentration of BALP, OCN, NTx, 25 (OH) vitamin D and Ca as compared to T-1 group in phase 2. Other possible attributes of bone health i.e. plasma concentration of Mg, P, parathyroid hormone (PTH), and calcitonin were not affected by BA supplementation at any levels.

Conclusion: Overall from present study it can be concluded that supplementation of boric acid 3.6 g/d (equivalent to 200 ppm B) in the diet of growing animals has positive effect on bone health related biomarkers (OCN, NTx and BALP) and supplementation of supranutritional level of BA i.e. 10.8 g (equivalent to 600 ppm B) level had neither additional beneficial nor harmful effect on bone health of calves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2020.126647DOI Listing

Publication Analysis

Top Keywords

boric acid
12
crossbred calves
12
acid supplementation
8
supplementation bone
8
bone health
8
male crossbred
8
basis body
8
body weight
8
effects boric
4
health crossbred
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!