Tumor targeted self-synergistic nanoplatforms for arsenic-sensitized photodynamic therapy.

Acta Biomater

The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China. Electronic address:

Published: November 2020

Development of antitumor agents with high efficiency and low toxicity is one of the most important goals for biomedical research. However, most traditional therapeutic strategies were limited due to their non-specificity and abnormal tumor microenvironments, causing a poor therapeutic efficiency and severe side effects. In this paper, a tumor targeted self-synergistic nanoplatform (designated as PAO@PCN@HA) was developed for chemotherapy sensitized photodynamic therapy (PDT) against hypoxic tumors. The efficient drug loading of phenylarsine oxide (PAO) in porphyrinic metal organic framework of PCN-224 as well as the surface modification of hyaluronic acid (HA) improved the targeted drug delivery and reduced the side effects of PAO at the therapeutic dose. Particularly, PAO as an arsenical-based chemotherapeutic agent could not only induce cell apoptosis by generating reactive oxygen species (ROS), but also regulate tumor microenvironments to improve the PDT effect of PCN-224 by mitigating hypoxia and consuming cellular GSH. Both in vitro and in vivo investigations confirmed an effective self-synergy of PAO@PCN@HA in hypoxic tumor therapy with a low systemic toxicity. This integration of microenvironment adjustment with tumor targeted self-synergistic mechanism might provide a new insight for the development of arsenic-based antitumor strategy for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.09.047DOI Listing

Publication Analysis

Top Keywords

tumor targeted
12
targeted self-synergistic
12
photodynamic therapy
8
tumor microenvironments
8
side effects
8
tumor
6
self-synergistic nanoplatforms
4
nanoplatforms arsenic-sensitized
4
arsenic-sensitized photodynamic
4
therapy development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!