AI Article Synopsis

  • Several studies show changes in specific sphingolipids in patients with kidney diseases, leading us to investigate these changes in kidney tissue from patients and mouse models of renal fibrosis.
  • Human kidney samples were obtained from patients undergoing nephrectomy and compared with healthy tissue, while mouse models of fibrosis were created using dietary changes and ureteral obstruction, with sphingolipid levels measured using LC-MS/MS.
  • The results indicated a significant decrease in specific long-chain ceramides in fibrotic kidney tissues, which corresponded with increased expression of fibrotic markers, suggesting that ceramide levels could be linked to kidney disease progression and might be useful as biomarkers.

Article Abstract

Background: Several studies revealed alterations of single sphingolipid species, such as chain length-specific ceramides, in plasma and serum of patients with kidney diseases. Here, we investigated whether such alterations occur in kidney tissue from patients and mice suffering from renal fibrosis, the common endpoint of chronic kidney diseases.

Methods: Human fibrotic kidney samples were collected from nephrectomy specimens with hydronephrosis and/or pyelonephritis. Healthy parts from tumor nephrectomies served as nonfibrotic controls. Mouse fibrotic kidney samples were collected from male C57BL/6J mice treated with an adenine-rich diet for 14 days or were subjected to 7 days of unilateral ureteral obstruction (UUO). Kidneys of untreated mice and contralateral kidneys (UUO) served as respective controls. Sphingolipid levels were detected by LC-MS/MS. Fibrotic markers were analyzed by TaqMan® analysis and immunohistology.

Results: Very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 were significantly downregulated in both fibrotic human kidney cortex and fibrotic murine kidney compared to respective control samples. These effects correlate with upregulation of COL1α1, COL3α1 and αSMA expression in fibrotic human kidney cortex and fibrotic mouse kidney.

Conclusion: We have shown that very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 are consistently downregulated in fibrotic kidney samples from human and mouse. Our findings support the use of in vivo murine models as appropriate translational means to understand the involvement of ceramides in human kidney diseases. In addition, our study raises interesting questions about the possible manipulation of ceramide metabolism to prevent progression of fibrosis and the use of ceramides as potential biomarkers of chronic kidney disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2020.158821DOI Listing

Publication Analysis

Top Keywords

fibrotic kidney
12
kidney samples
12
human kidney
12
kidney
11
fibrotic
9
chain length-specific
8
length-specific ceramides
8
ceramides human
8
human mouse
8
mouse fibrotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!