Direct interaction of cocaine with centrally located monoamine transporters is the primary mechanism underlying its reinforcing properties. It is also often assumed that this drug action is responsible for all the physiological and behavioral effects of this drug. The goal of this review is to challenge this basic mechanism and demonstrate the importance of peripheral actions of cocaine in inducing its initial, rapid neural effects. The use of high-resolution electrophysiological, neurochemical and physiological techniques revealed that the effects of intravenous cocaine at behaviorally relevant doses are exceptionally rapid and transient correlating with strong, quick, and transient increases in blood cocaine levels. Some of these effects are mimicked by cocaine-methiodide, a cocaine analog that cannot cross the blood-brain barrier and they are resistant to dopamine (DA) receptor blockade. Therefore, it appears that rapid neural effects of cocaine result from its direct interaction with receptive sites on afferents of sensory nerves densely innervating blood vessels. This interaction creates a rapid neural signal to the CNS that results in generalized neural activation and subsequent changes in different physiological parameters. This drug's action appears to be independent from cocaine's action on central neurons, which requires a definite time to occur and induce neural and physiological effects with longer latencies and durations. The co-existence in the same drug on two timely distinct actions with their subsequent interaction in the CNS could explain consistent changes in physiological and behavioral effects of cocaine following their repeated use, playing a role in the development of drug-seeking and drug-taking behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704732 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2020.09.050 | DOI Listing |
Bioinformatics
January 2025
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.
Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.
View Article and Find Full Text PDFiScience
February 2025
ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Cricket song recognition is thought to evolve through modifications of a shared neural network. However, the species has an unusual recognition pattern that challenges this view: females respond to both normal male song pulse periods and periods twice as long. Of the three minimal models tested, only a single-neuron model with an oscillating membrane could explain this unusual behavior.
View Article and Find Full Text PDFNat Mach Intell
January 2025
Engineering Laboratory, University of Cambridge, Cambridge, UK.
Molecular dynamics simulation is an important tool in computational materials science and chemistry, and in the past decade it has been revolutionized by machine learning. This rapid progress in machine learning interatomic potentials has produced a number of new architectures in just the past few years. Particularly notable among these are the atomic cluster expansion, which unified many of the earlier ideas around atom-density-based descriptors, and Neural Equivariant Interatomic Potentials (NequIP), a message-passing neural network with equivariant features that exhibited state-of-the-art accuracy at the time.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
School of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!