Objective: Pre-eclampsia (PE) is a pregnancy-associated condition initiated by placental factors. We have demonstrated that placental extracellular vesicles (pcEVs) cause hypertension and proteinuria in pregnant and non-pregnant mice.
Study Design: An observational study with both case-control and longitudinal designs.
Setting: A single centre at the Department of Obstetrics and Gynaecology, Tianjin Medical University.
Population: We collected blood samples and clinical information from 54 PE patients, 33 normally pregnant women at 30-36 gestational weeks and on postpartum days 1 and 4 for the cross-sectional study, and at 22-31, 32-35 and 36-40 weeks for the longitudinal study. Non-pregnant women were also recruited.
Methods: Blood samples were analysed using flow cytometry, coagulation tests and ELISA.
Main Outcome Measures: The primary outcome was plasma pcEV and other extracellular vesicles (EVs), and their expressions of anionic phospholipids and von Willebrand factor (VWF). Secondary variables included coagulation, ADAMTS-13 and the anionic phospholipid-binding proteins.
Results: Plasma pcEVs progressively increased from pregnant women during non-menstrual period (NW) to PE patients (interquartile range [IQR] for NW: 206/microlitre [116-255], normal pregnancy [NP]: 1108/microlitre [789-1969] and PE: 8487/microlitre [4991-16 752]) and predicted PE. EVs from endothelial cells, platelets and erythrocytes accounted for <10% of pcEVs. VWF became hyper-adhesive in PE patients and contributed to the pregnancy-associated hypercoagulability.
Conclusion: Placental, platelet- and endothelial cell-derived EVs were significantly elevated in PE patients, but only pcEVs predicted PE. These EVs played a causal role in the pregnancy-induced hypercoagulability.
Tweetable Abstract: Placenta-derived extracellular vesicles predict pre-eclampsia and the associated hypercoagulability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1471-0528.16552 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Research Center of the Carolinas, Charleston, South Carolina, USA.
Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.
Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.
Cancers (Basel)
January 2025
Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.
Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!