Objective: Identify the subcellular location and potential binding partners of two cerebellar degeneration-related proteins, CDR2L and CDR2, associated with anti-Yo-mediated paraneoplastic cerebellar degeneration.
Methods: Cancer cells, rat Purkinje neuron cultures, and human cerebellar sections were exposed to cerebrospinal fluid and serum from patients with paraneoplastic cerebellar degeneration with Yo antibodies and with several antibodies against CDR2L and CDR2. We used mass spectrometry-based proteomics, super-resolution microscopy, proximity ligation assay, and co-immunoprecipitation to verify the antibodies and to identify potential binding partners.
Results: We confirmed the CDR2L specificity of Yo antibodies by mass spectrometry-based proteomics and found that CDR2L localized to the cytoplasm and CDR2 to the nucleus. CDR2L co-localized with the 40S ribosomal protein S6, while CDR2 co-localized with the nuclear speckle proteins SON, eukaryotic initiation factor 4A-III, and serine/arginine-rich splicing factor 2.
Interpretation: We showed that Yo antibodies specifically bind to CDR2L in Purkinje neurons of PCD patients where they potentially interfere with the function of the ribosomal machinery resulting in disrupted mRNA translation and/or protein synthesis. Our findings demonstrating that CDR2L interacts with ribosomal proteins and CDR2 with nuclear speckle proteins is an important step toward understanding PCD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664253 | PMC |
http://dx.doi.org/10.1002/acn3.51212 | DOI Listing |
Int J Mol Sci
December 2024
Cerebro, Emoción y Conducta, School of Medicine, Universidad de las Américas (UDLA), Quito 170124, Ecuador.
Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
Paraneoplastic cerebellar degeneration (PCD) with anti-Yo antibodies represents a rare immune-mediated paraneoplastic neurological syndrome. Its diagnosis and management remain clinically challenging. Here, we present a case of PCD with confirmed anti-Yo antibodies, validated through anti-cerebellar degeneration protein 2 (CDR2) and anti-CDR2-like antibodies detection, which demonstrated a favorable response to ofatumumab therapy.
View Article and Find Full Text PDFbioRxiv
November 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The endoplasmic reticulum (ER) relies on the microtubule cytoskeleton for distribution and remodelling of its extended membrane network, but how microtubule-based motors contribute to ER organization remains unclear. Using biochemical and cell-based assays, we identify cerebellar degeneration-related protein 2 (CDR2) and its paralog CDR2-like (CDR2L), onconeural antigens with poorly understood functions, as ER adaptors for cytoplasmic dynein-1 (dynein). We demonstrate that CDR2 is recruited by the integral ER membrane protein kinectin (KTN1) and that double knockout of CDR2 and CDR2L enhances KTN1-dependent ER sheet stacking, reversal of which by exogenous CDR2 requires its dynein-binding CC1 box motif.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2024
Department of Clinical Medicine, University of Bergen, Bergen, Norway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!