Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-020-02139-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!