MicroRNAs (miRNAs) have been reported to be correlated with various stress responses in soybean, but only a few miRNAs have been demonstrated to respond to low phosphorus (LP) stress. To unravel the response mechanisms of miRNAs to low-P stress, the roots of two representative soybean genotypes with different P efficiency, Nannong94-156 (a LP-tolerant genotype) and Bogao (a LP-sensitive genotype), were used for the construction of RNA sequencing (RNA-seq) libraries under low/normal-P treatment by high-throughput sequencing. In total, 603 existing miRNAs and 1699 novel miRNAs belonging to 248 and 1582 families in all samples were identified, respectively. Among these miRNAs, 777 miRNAs were differentially expressed (DE) across different P levels and genotypes. Furthermore, putative targets of DE miRNAs were predicted, and these miRNAs mainly targeted ERF (ethylene responsive factor), auxin response factors (ARF), zinc finger protein, MYB, and NAC domain transcription factors. Gene ontology (GO) analysis showed that targets of DE miRNAs were significantly enriched in binding, metabolic processes, biological regulation, response to stress, and phosphorus metabolic processes. In addition, the expression profiles of chosen P-responsive miRNAs and target genes were validated by quantitative real-time PCR (qRT-PCR). Our study focused on genome-wide miRNA identification in two representative soybean genotypes under low-P stress. Overall, the DE miRNAs across different P levels and genotypes and their putative target genes will provide useful information for further study of miRNAs mediating low-P response and facilitate improvements in soybean breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-020-00754-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!