Background: Sagittal pelvic dynamics mainly consist of the pelvis rotating anteriorly or posteriorly while the hips flexes, and this affects the femoroacetabular or THA configuration. Thus far, it is unknown how the acetabular cup of the THA in the individual patient reorients with changing sagittal pelvic dynamics.

Questions/purposes: The aim of this study was to validate a method that establishes the three-dimensional (3-D) acetabular cup orientation with changing sagittal pelvic dynamics and describe these changes during functional pelvic dynamics.

Methods: A novel trigonometric mathematical model, which was incorporated into an easy-to-use tool, was tested. The model connected sagittal tilt, transverse version, and coronal inclination of the acetabular cup during sagittal pelvic tilt. Furthermore, the effect of sagittal pelvic tilt on the 3-D reorientation of acetabular cups was simulated for cups with different initial positions. Twelve pelvic CT images of patients who underwent THA were taken and rotated around the hip axis to different degrees of anterior and posterior sagittal pelvic tilt (± 30°) to simulate functional pelvic tilt in various body positions. For each simulated pelvic tilt, the transverse version and coronal inclination of the cup were manually measured and compared with those measured in a mathematical model in which the 3-D cup positions were calculated. Next, this model was applied to different acetabular cup positions to simulate the effect of sagittal pelvic dynamics on the 3-D orientation of the acetabular cup in the coronal and transverse plane. After pelvic tilt was applied, the intraclass correlation coefficients of 108 measured and calculated coronal and transverse cup orientation angles were 0.963 and 0.990, respectively, validating the clinical use of the mathematical model.

Results: The changes in 3-D acetabular cup orientation by functional pelvic tilt differed substantially between cups with different initial positions; the change in transverse version was much more pronounced in cups with low coronal inclination (from 50° to -29°) during functional pelvic tilt than in cups with a normal coronal inclination (from 39° to -11°) or high coronal inclination (from 31° to 2°). However, changes in coronal inclination were more pronounced in acetabular cups with high transverse version.

Conclusion: Using a simple algorithm to determine the dynamic 3-D reorientation of the acetabular cup during functional sagittal pelvic tilt, we demonstrated that the 3-D effect of functional pelvic tilt is specific to the initial acetabular cup orientation and thus per THA patient.

Clinical Relevance: Future studies concerning THA (in)stability should not only include the initial acetabular cup orientation, but also they need to incorporate the effect of sagittal pelvic dynamics on the individual 3-D acetabular cup orientation. Clinicians can also use the developed tool, www.3d-hip.com, to calculate the acetabular cup's orientation in other instances, such as for patients with spinopelvic imbalance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899699PMC
http://dx.doi.org/10.1097/CORR.0000000000001489DOI Listing

Publication Analysis

Top Keywords

acetabular cup
44
pelvic tilt
40
sagittal pelvic
36
cup orientation
24
coronal inclination
24
pelvic dynamics
20
functional pelvic
20
pelvic
17
acetabular
14
cup
14

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!