Background: Liver fibrosis (LF) continues to develop and eventually progresses to cirrhosis. However, LF and early-stage cirrhosis (ESC) can be reversed in some cases, while advanced cirrhosis is almost impossible to cure. Advances in quantitative imaging techniques have made it possible to replace the gold standard biopsy method with non-invasive imaging, such as radiomics. Therefore, the purpose of this study is to develop a radiomics model to identify LF and ESC.

Methods: Patients with LF (n = 108) and ESC (n = 116) were enrolled in this study. As a control, patients with healthy livers were involved in the study (n = 145). Diffusion-weighted imaging (DWI) data sets with three b-values (0, 400, and 800 s/mm) of enrolled cases were collected in this study. Then, radiomics features were extracted from manually delineated volumes of interest. Two modeling strategies were performed after univariate analysis and feature selection. Finally, an optimal model was determined by the receiver operating characteristic area under the curve (AUC).

Results: The optimal models were built in plan 1. For model 1 in plan 1, the AUCs of the training and validation cohorts were 0.973 (95% confidence interval [CI] 0.946-1.000) and 0.948 (95% CI 0.903-0.993), respectively. For model 2 in plan 1, the AUCs of the training and validation cohorts were 0.944, 95% CI 0.905 to 0.983, and 0.968, 95% CI 0.940 to 0.996, respectively.

Conclusions: Radiomics analysis of DWI images allows for accurate identification of LF and ESC, and the non-invasive biomarkers extracted from the functional DWI images can serve as a better alternative to biopsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647495PMC
http://dx.doi.org/10.1097/CM9.0000000000001113DOI Listing

Publication Analysis

Top Keywords

radiomics model
8
liver fibrosis
8
early-stage cirrhosis
8
model plan
8
plan aucs
8
aucs training
8
training validation
8
validation cohorts
8
dwi images
8
radiomics
5

Similar Publications

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Acad Radiol

January 2025

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 (C.L., S.W.); Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (D.A., M.Z., J.S., S.W.); Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 (S.W.); Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15213 (S.W.). Electronic address:

Rationale And Objectives: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a statistical model to predict severe acute oral mucositis in head and neck cancer patients receiving carbon-ion radiation therapy.
  • Used a combination of clinical data, dose-volume statistics, and advanced imaging features for better prediction accuracy.
  • The model showed high accuracy rates (87.1% training, 90.7% test) and can potentially aid in treatment planning and identifying patients at high risk for this complication.
View Article and Find Full Text PDF

Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics.

Comput Methods Programs Biomed

January 2025

Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy. Electronic address:

Article Synopsis
  • Machine learning-based clinical decision support systems (CDSS) face challenges with transparency and reliability, as explainability often reduces predictive accuracy.
  • A novel method called Rad4XCNN enhances the predictive power of CNN features while maintaining interpretability through Radiomics, moving beyond traditional saliency maps.
  • In breast cancer classification tasks, Rad4XCNN demonstrates superior accuracy compared to other feature types and allows for global insights, effectively addressing the explainability-accuracy trade-off in AI models.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!