AI Article Synopsis

  • Benign thyroid disorders, particularly hyperthyroidism and hypothyroidism, are the most common endocrine issues, with hyperthyroidism often caused by Graves disease, toxic multinodular goiter, or toxic thyroid adenoma.
  • Diagnosis involves lab tests showing low TSH and elevated thyroid hormone levels, alongside ultrasound and scintigraphy to assess the thyroid's characteristics and aid in distinguishing types.
  • Treatment options include antithyroid medications, surgery, and radioiodine therapy, with the latter commonly used when other treatments fail or are not suitable, aiming for either euthyroid status or induced hypothyroidism in different types of hyperthyroidism.

Article Abstract

Benign thyroid disorders, especially hyper- and hypothyroidism, are the most prevalent endocrine disorders. The most common etiologies of hyperthyroidism are autoimmune hyperthyroidism (Graves disease, GD), toxic multinodular goiter (TMNG), and toxic thyroid adenoma (TA). Less common etiologies include destructive thyroiditis (e.g., amiodarone-induced thyroid dysfunction) and factitious hyperthyroidism. GD is caused by autoantibodies against the thyroid-stimulating hormone (TSH) receptor. TMNG and TA are caused by a somatic activating gain-of-function mutation. Typical laboratory findings in patients with hyperthyroidism are low TSH, elevated free-thyroxine and free-triiodothyronine levels, and TSH-receptor autoantibodies in patients with GD. Ultrasound imaging is used to determine the size and vascularity of the thyroid gland and the location, size, number, and characteristics of thyroid nodules. Combined with lab tests, these features constitute the first-line diagnostic approach to distinguishing different forms of hyperthyroidism. Thyroid scintigraphy with either radioiodine or Tc-pertechnetate is useful to characterize different forms of hyperthyroidism and provides information for planning radioiodine therapy. There are specific scintigraphic patterns for GD, TMNG, TA, and destructive thyroiditis. Scintigraphy with Tc-sestamibi allows differentiation of type 1 from type 2 amiodarone-induced hyperthyroidism. The radioiodine uptake test provides information for planning radioiodine therapy of hyperthyroidism. Hyperthyroidism can be treated with oral antithyroid drugs, surgical thyroidectomy, or I-iodide. Radioiodine therapy is generally considered after failure of treatment with antithyroid drugs, or when surgery is contraindicated or refused by the patient. In patients with TA or TMNG, the goal of radioiodine therapy is to achieve euthyroid status. In GD, the goal of radioiodine therapy is to induce hypothyroidism, a status that is readily treatable with oral thyroid hormone replacement therapy. Dosimetric estimates based on the thyroid volume to be treated and on radioiodine uptake should guide selection of the I-activity to be administered. Early side effects of radioiodine therapy (typically mild pain in the thyroid) can be handled by nonsteroidal antiinflammatory drugs. Delayed side effects after radioiodine therapy for hyperthyroidism are hypothyroidism and a minimal risk of radiation-induced malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.120.243170DOI Listing

Publication Analysis

Top Keywords

radioiodine therapy
28
hyperthyroidism
11
thyroid
10
radioiodine
10
benign thyroid
8
thyroid disorders
8
common etiologies
8
destructive thyroiditis
8
forms hyperthyroidism
8
planning radioiodine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!