Environmental fluctuations in the availability of nutrients lead to intricate metabolic strategies. " Accumulibacter phosphatis," a polyphosphate-accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the nonavailability of isolates has led to controversial conclusions on the metabolic pathways used. In this study, we experimentally determined the redox cofactor preferences of different oxidoreductases in the central carbon metabolism of a highly enriched " Accumulibacter phosphatis" culture. Remarkably, we observed that the acetoacetyl coenzyme A reductase engaged in polyhydroxyalkanoate (PHA) synthesis is NADH preferring instead of showing the generally assumed NADPH dependency. This allows rethinking of the ecological role of PHA accumulation as a fermentation product under anaerobic conditions and not just a stress response. Based on previously published metaomics data and the results of enzymatic assays, a reduced central carbon metabolic network was constructed and used for simulating different metabolic operating modes. In particular, scenarios with different acetate-to-glycogen consumption ratios were simulated, which demonstrated optima using different combinations of glycolysis, glyoxylate shunt, or branches of the tricarboxylic acid (TCA) cycle. Thus, optimal metabolic flux strategies will depend on the environment (acetate uptake) and on intracellular storage compound availability (polyphosphate/glycogen). This NADH-related metabolic flexibility is enabled by the NADH-driven PHA synthesis. It allows for maintaining metabolic activity under various environmental substrate conditions, with high carbon conservation and lower energetic costs than for NADPH-dependent PHA synthesis. Such (flexible) metabolic redox coupling can explain the competitiveness of PAOs under oxygen-fluctuating environments. Here, we demonstrate how microbial storage metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity of " Accumulibacter phosphatis" to act like glycogen-accumulating organisms (GAOs). These observations stem from slightly different experimental conditions, and controversy arises only when one assumes that metabolism can operate only in a single mode. Furthermore, we also show how the study of metabolic strategies is possible when combining omics data with functional cofactor assays and modeling. Genomic information can only provide the potential of a microorganism. The environmental context and other complementary approaches are still needed to study and predict the functional expression of such metabolic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688218PMC
http://dx.doi.org/10.1128/AEM.00808-20DOI Listing

Publication Analysis

Top Keywords

accumulibacter phosphatis"
16
metabolic
12
pha synthesis
12
metabolic flexibility
8
redox cofactor
8
metabolic network
8
metabolic strategies
8
central carbon
8
environmental conditions
8
environmental
5

Similar Publications

Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system.

Water Res

December 2024

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Article Synopsis
  • A new organism, named 'Candidatus Thiothrix phosphatis SCUT-1', was found in an enhanced biological phosphorus removal system, achieving high performance for over 100 days.
  • This organism demonstrated superior acetate uptake rates compared to other known phosphate-accumulating organisms, utilizing both conventional and advanced metabolic pathways for efficient acetate processing.
  • The research provided a detailed understanding of the metabolic capabilities of Ca. Thiothrix phosphatis SCUT-1, showcasing its unique ecological role in utilizing various carbon sources for phosphorus removal, which could enhance knowledge of PAO microbiology in similar systems.
View Article and Find Full Text PDF

Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS.

View Article and Find Full Text PDF

Research focused on interrogating post-anoxic enhanced biological phosphorus removal (EBPR) at bench and pilot scales. Average bench-scale effluent ranged from 0.33 to 1.

View Article and Find Full Text PDF

" Accumulibacter" was the first microorganism identified as a polyphosphate-accumulating organism (PAO) important for phosphorus removal from wastewater. Members of this genus are diverse, and the current phylogeny and taxonomic framework appear complicated, with most publicly available genomes classified as " Accumulibacter phosphatis," despite notable phylogenetic divergence. The marker gene allows for a finer-scale differentiation into different "types" and "clades"; nevertheless, taxonomic assignments remain inconsistent across studies.

View Article and Find Full Text PDF

Diclofenac biotransformation in the enhanced biological phosphorus removal process.

Sci Total Environ

February 2022

UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia. Electronic address:

Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!