Purpose: Olecranon fracture is a common upper limb fracture, and several surgical approaches have been advocated for its fixation. To overcome the complications associated with common techniques, we present a novel shape-memory alloy concentrator, an alternative for tension band compression, to fix olecranon fracture.
Methods: Fifty-seven patients (26 men and 31 women) with olecranon fracture, with a mean age of 45 years, were included in this study. Each patient had undergone open reduction and internal fixation using the Nitinol (Ni-Ti) arched shape-memory connector (ASC). The clinical assessments were performed using the Disability of the Arm, Shoulder, and Hand (DASH) questionnaire and the Mayo Elbow Performance (MEP) score, which were both recorded at the final follow-up visit.
Results: The patients were followed up for 44 months on average (range, 31 to 56 months). No patients were lost to follow-up, and all of the olecranon fractures healed in an average of 15 weeks (range, 10 to 34 weeks). The mean DASH score was 8.6 (range, 0 to 32.4), and the mean MEP score was 92.5 (range, 74 to 100). Nine patients showed postoperative complications: prominent hardware (2), infection (1), loss of the range of functional motion (5), and heterotopic ossification (1).
Conclusion: The ASC may serve as a favorable device for multi-fragmented and comminuted fractures with rare hardware irritation and may also provide continuous concentrative compression to accelerate osseous healing, thereby aiding the restoration and permitting an early rehabilitation with a low incidence of postoperative complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531136 | PMC |
http://dx.doi.org/10.1186/s13018-020-01982-2 | DOI Listing |
Ann Ital Chir
December 2024
Department of Cardiovascular Surgery, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China.
Int J Biol Macromol
December 2024
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.
Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia.
The simple approach of increasing the elastic properties of atactic poly(propylene carbonate) (PPC) with Mn = 71.4 kDa, ĐM = M/M = 1.86, and predominantly carbonate units (>99%) is suggested by selecting the appropriate hot pressing temperature for PPC between 110 and 140 °C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.
In situ monitoring of small molecule diffusion at solid-solid interfaces is challenging, even with sophisticated equipment. Here, novel chromogenic photonic crystal detectors enabled by integrating bioinspired structural color with stimuli-responsive shape memory polymer (SMP) for detecting trace amounts of small molecule interfacial diffusion are reported. Colorless macroporous SMP membranes with deformed macropores can recover back to the "memorized" photonic crystal microstructures and the corresponding iridescent structural colors when triggered by diffused small molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!