Background: Corynebacterium glutamicum thrives under oxidative stress caused by the inevitably extreme environment during fermentation as it harbors antioxidative stress genes. Antioxidant genes are controlled by pathway-specific sensors that act in response to growth conditions. Although many families of oxidation-sensing regulators in C. glutamicum have been well described, members of the xenobiotic-response element (XRE) family, involved in oxidative stress, remain elusive.
Results: In this study, we report a novel redox-sensitive member of the XER family, MsrR (multiple stress resistance regulator). MsrR is encoded as part of the msrR-3-mst (3-mercaptopyruvate sulfurtransferase) operon; msrR-3-mst is divergent from multidrug efflux protein MFS. MsrR was demonstrated to bind to the intergenic region between msrR-3-mst and mfs. This binding was prevented by an MsrR oxidation-mediated increase in MsrR dimerization. MsrR was shown to use Cys62 oxidation to sense oxidative stress, resulting in its dissociation from the promoter. Elevated expression of msrR-3-mst and mfs was observed under stress. Furthermore, a ΔmsrR mutant strain displayed significantly enhanced growth, while the growth of strains lacking either 3-mst or mfs was significantly inhibited under stress.
Conclusion: This report is the first to demonstrate the critical role of MsrR-3-MST-MFS in bacterial stress resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532634 | PMC |
http://dx.doi.org/10.1186/s12934-020-01444-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!