Directed Evolution of Therapeutic Antibodies Targeting Glycosylation in Cancer.

Cancers (Basel)

Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel.

Published: September 2020

Glycosylation patterns commonly change in cancer, resulting in expression of tumor-associated carbohydrate antigens (TACA). While promising, currently available anti-glycan antibodies are not useful for clinical cancer therapy. Here, we show that potent anti-glycan antibodies can be engineered to acquire cancer therapeutic efficacy. We designed yeast surface display to generate and select for therapeutic antibodies against the TACA SLe (CA19-9) in colon and pancreatic cancers. Elite clones showed increased affinity, better specificity, improved binding of human pancreatic and colon cancer cell lines, and increased complement-dependent therapeutic efficacy. Molecular modeling explained the structural basis for improved antibody functionality at the molecular level. These new tools of directed molecular evolution and selection for effective anti-glycan antibodies, provide insights into the mechanisms of cancer therapy targeting glycosylation, and provide major methodological advances that are likely to open up innovative avenues of research in the field of cancer theranostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601599PMC
http://dx.doi.org/10.3390/cancers12102824DOI Listing

Publication Analysis

Top Keywords

anti-glycan antibodies
12
therapeutic antibodies
8
targeting glycosylation
8
cancer therapy
8
therapeutic efficacy
8
cancer
7
antibodies
5
directed evolution
4
therapeutic
4
evolution therapeutic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!