Severe skin burns are widely treated using split-thickness skin autografts. However, the accessibility of the donor site may be limited depending on the size of the injured surface. As an alternative to skin autografts, our laboratory is clinically investigating a model of human self-assembled skin substitute (SASS) with a standard size of 35 cm. For the management of extensive skin wounds, multiple grafts are required to cover the entire wound bed. Even if SASSs could provide an adequate and efficient treatment, in some cases, the long-term follow-up of the skin graft site reveals the appearance of marks at the junction between SASSs. This study aims to produce a large-sized self-assembled skin substitute (L-SASS; 289 cm) and evaluate its preclinical potential for skin wound coverage. The L-SASSs and SASSs shared similar contraction behavior on an agar surface, thickness, and epidermal differentiation in vitro. After grafting, similar histological results were obtained for skin substitutes produced with both methods. Hence, the self-assembly approach of tissue engineering is a scaffold-free method that allows the production of living skin substitutes in a large format.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/abbdbeDOI Listing

Publication Analysis

Top Keywords

self-assembled skin
12
skin substitute
12
skin
11
human self-assembled
8
skin autografts
8
skin substitutes
8
biofabrication preclinical
4
preclinical evaluation
4
evaluation large-sized
4
large-sized human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!